Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem27 Structured version   Visualization version   GIF version

Theorem etransclem27 46257
Description: The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem27.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem27.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem27.p (𝜑𝑃 ∈ ℕ)
etransclem27.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem27.cfi (𝜑𝐶 ∈ Fin)
etransclem27.cf (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
etransclem27.g 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
etransclem27.jx (𝜑𝐽𝑋)
etransclem27.jz (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem27 (𝜑 → (𝐺𝐽) ∈ ℤ)
Distinct variable groups:   𝐶,𝑗,𝑙,𝑥   𝑥,𝐻   𝑗,𝐽,𝑙,𝑥   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑙,𝑥
Allowed substitution hints:   𝑃(𝑙)   𝑆(𝑗,𝑙)   𝐺(𝑥,𝑗,𝑙)   𝐻(𝑗,𝑙)   𝑀(𝑙)   𝑋(𝑙)

Proof of Theorem etransclem27
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem27.g . . 3 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
2 fveq2 6881 . . . . 5 (𝑥 = 𝐽 → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
32prodeq2ad 45588 . . . 4 (𝑥 = 𝐽 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
43sumeq2sdv 15724 . . 3 (𝑥 = 𝐽 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
5 etransclem27.jx . . 3 (𝜑𝐽𝑋)
6 etransclem27.cfi . . . . 5 (𝜑𝐶 ∈ Fin)
7 dmfi 9352 . . . . 5 (𝐶 ∈ Fin → dom 𝐶 ∈ Fin)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐶 ∈ Fin)
9 fzfid 13996 . . . . 5 ((𝜑𝑙 ∈ dom 𝐶) → (0...𝑀) ∈ Fin)
10 etransclem27.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
12 etransclem27.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
14 etransclem27.p . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
16 etransclem27.h . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
17 etransclem5 46235 . . . . . . . 8 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
1816, 17eqtri 2759 . . . . . . 7 𝐻 = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
19 simpr 484 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
20 etransclem27.cf . . . . . . . . . 10 (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
2120ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙) ∈ (ℕ0m (0...𝑀)))
22 elmapi 8868 . . . . . . . . 9 ((𝐶𝑙) ∈ (ℕ0m (0...𝑀)) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2423ffvelcdmda 7079 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℕ0)
2511, 13, 15, 18, 19, 24etransclem20 46250 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗)):𝑋⟶ℂ)
265ad2antrr 726 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝐽𝑋)
2725, 26ffvelcdmd 7080 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
289, 27fprodcl 15973 . . . 4 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
298, 28fsumcl 15754 . . 3 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
301, 4, 5, 29fvmptd3 7014 . 2 (𝜑 → (𝐺𝐽) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
3111, 13, 15, 18, 19, 24, 26etransclem21 46251 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))))
32 iftrue 4511 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) = 0)
33 0zd 12605 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → 0 ∈ ℤ)
3432, 33eqeltrd 2835 . . . . . . 7 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
3534adantl 481 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
36 0zd 12605 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ∈ ℤ)
37 nnm1nn0 12547 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3814, 37syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3914nnnn0d 12567 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ0)
4038, 39ifcld 4552 . . . . . . . . . . . . 13 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
4140nn0zd 12619 . . . . . . . . . . . 12 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4241ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4324nn0zd 12619 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4443adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4542, 44zsubcld 12707 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ)
4644zred 12702 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
4742zred 12702 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
48 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗))
4946, 47, 48nltled 11390 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
5047, 46subge0d 11832 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ↔ ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))
5149, 50mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))
52 0red 11243 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5324nn0red 12568 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
5440nn0red 12568 . . . . . . . . . . . . . . 15 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5624nn0ge0d 12570 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝐶𝑙)‘𝑗))
5752, 53, 55, 56lesub2dd 11859 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0))
5855recnd 11268 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
5958subid1d 11588 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0) = if(𝑗 = 0, (𝑃 − 1), 𝑃))
6057, 59breqtrd 5150 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6236, 42, 45, 51, 61elfzd 13537 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)))
63 permnn 14349 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6462, 63syl 17 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6564nnzd 12620 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
66 etransclem27.jz . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
6766ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝐽 ∈ ℤ)
68 elfzelz 13546 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
6968ad2antlr 727 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝑗 ∈ ℤ)
7067, 69zsubcld 12707 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (𝐽𝑗) ∈ ℤ)
71 elnn0z 12606 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0 ↔ ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ ∧ 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))
7245, 51, 71sylanbrc 583 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0)
73 zexpcl 14099 . . . . . . . . 9 (((𝐽𝑗) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7470, 72, 73syl2anc 584 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7565, 74zmulcld 12708 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
7636, 75ifcld 4552 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7735, 76pm2.61dan 812 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7831, 77eqeltrd 2835 . . . 4 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
799, 78fprodzcl 15975 . . 3 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
808, 79fsumzcl 15756 . 2 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
8130, 80eqeltrd 2835 1 (𝜑 → (𝐺𝐽) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4505  {cpr 4608   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  ...cfz 13529  cexp 14084  !cfa 14296  Σcsu 15707  cprod 15924  t crest 17439  TopOpenctopn 17440  fldccnfld 21320   D𝑛 cdvn 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-prod 15925  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-dvn 25826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator