Step | Hyp | Ref
| Expression |
1 | | etransclem27.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥)) |
2 | | fveq2 6499 |
. . . . 5
⊢ (𝑥 = 𝐽 → (((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽)) |
3 | 2 | prodeq2ad 41302 |
. . . 4
⊢ (𝑥 = 𝐽 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽)) |
4 | 3 | sumeq2sdv 14921 |
. . 3
⊢ (𝑥 = 𝐽 → Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥) = Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽)) |
5 | | etransclem27.jx |
. . 3
⊢ (𝜑 → 𝐽 ∈ 𝑋) |
6 | | etransclem27.cfi |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Fin) |
7 | | dmfi 8597 |
. . . . 5
⊢ (𝐶 ∈ Fin → dom 𝐶 ∈ Fin) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐶 ∈ Fin) |
9 | | fzfid 13156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑙 ∈ dom 𝐶) → (0...𝑀) ∈ Fin) |
10 | | etransclem27.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
11 | 10 | ad2antrr 713 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
12 | | etransclem27.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
13 | 12 | ad2antrr 713 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
14 | | etransclem27.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℕ) |
15 | 14 | ad2antrr 713 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
16 | | etransclem27.h |
. . . . . . . 8
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
17 | | etransclem5 41953 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑧 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃)))) |
18 | 16, 17 | eqtri 2803 |
. . . . . . 7
⊢ 𝐻 = (𝑧 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃)))) |
19 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
20 | | etransclem27.cf |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶:dom 𝐶⟶(ℕ0
↑𝑚 (0...𝑀))) |
21 | 20 | ffvelrnda 6676 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ dom 𝐶) → (𝐶‘𝑙) ∈ (ℕ0
↑𝑚 (0...𝑀))) |
22 | | elmapi 8228 |
. . . . . . . . 9
⊢ ((𝐶‘𝑙) ∈ (ℕ0
↑𝑚 (0...𝑀)) → (𝐶‘𝑙):(0...𝑀)⟶ℕ0) |
23 | 21, 22 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ dom 𝐶) → (𝐶‘𝑙):(0...𝑀)⟶ℕ0) |
24 | 23 | ffvelrnda 6676 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶‘𝑙)‘𝑗) ∈
ℕ0) |
25 | 11, 13, 15, 18, 19, 24 | etransclem20 41968 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗)):𝑋⟶ℂ) |
26 | 5 | ad2antrr 713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝐽 ∈ 𝑋) |
27 | 25, 26 | ffvelrnd 6677 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℂ) |
28 | 9, 27 | fprodcl 15166 |
. . . 4
⊢ ((𝜑 ∧ 𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℂ) |
29 | 8, 28 | fsumcl 14950 |
. . 3
⊢ (𝜑 → Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℂ) |
30 | 1, 4, 5, 29 | fvmptd3 6617 |
. 2
⊢ (𝜑 → (𝐺‘𝐽) = Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽)) |
31 | 11, 13, 15, 18, 19, 24, 26 | etransclem21 41969 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))))) |
32 | | iftrue 4356 |
. . . . . . . 8
⊢ (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))))) = 0) |
33 | | 0zd 11805 |
. . . . . . . 8
⊢ (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗) → 0 ∈ ℤ) |
34 | 32, 33 | eqeltrd 2867 |
. . . . . . 7
⊢ (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))))) ∈ ℤ) |
35 | 34 | adantl 474 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))))) ∈ ℤ) |
36 | | 0zd 11805 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → 0 ∈ ℤ) |
37 | | nnm1nn0 11750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
38 | 14, 37 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
39 | 14 | nnnn0d 11767 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
40 | 38, 39 | ifcld 4395 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
41 | 40 | nn0zd 11898 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ) |
42 | 41 | ad3antrrr 717 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ) |
43 | 24 | nn0zd 11898 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶‘𝑙)‘𝑗) ∈ ℤ) |
44 | 43 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((𝐶‘𝑙)‘𝑗) ∈ ℤ) |
45 | 42, 44 | zsubcld 11905 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℤ) |
46 | 36, 42, 45 | 3jca 1108 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℤ)) |
47 | 44 | zred 11900 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((𝐶‘𝑙)‘𝑗) ∈ ℝ) |
48 | 42 | zred 11900 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
49 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) |
50 | 47, 48, 49 | nltled 10590 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((𝐶‘𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)) |
51 | 48, 47 | subge0d 11031 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ↔ ((𝐶‘𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
52 | 50, 51 | mpbird 249 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))) |
53 | | 0red 10443 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ) |
54 | 24 | nn0red 11768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶‘𝑙)‘𝑗) ∈ ℝ) |
55 | 40 | nn0red 11768 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
56 | 55 | ad2antrr 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
57 | 24 | nn0ge0d 11770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝐶‘𝑙)‘𝑗)) |
58 | 53, 54, 56, 57 | lesub2dd 11058 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0)) |
59 | 56 | recnd 10468 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℂ) |
60 | 59 | subid1d 10787 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0) = if(𝑗 = 0, (𝑃 − 1), 𝑃)) |
61 | 58, 60 | breqtrd 4955 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)) |
62 | 61 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)) |
63 | 46, 52, 62 | jca32 508 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℤ) ∧ (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
64 | | elfz2 12715 |
. . . . . . . . . . 11
⊢
((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) ↔ ((0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℤ) ∧ (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
65 | 63, 64 | sylibr 226 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
66 | | permnn 13501 |
. . . . . . . . . 10
⊢
((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) ∈ ℕ) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) ∈ ℕ) |
68 | 67 | nnzd 11899 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) ∈ ℤ) |
69 | | etransclem27.jz |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ ℤ) |
70 | 69 | ad3antrrr 717 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → 𝐽 ∈ ℤ) |
71 | | elfzelz 12724 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
72 | 71 | ad2antlr 714 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → 𝑗 ∈ ℤ) |
73 | 70, 72 | zsubcld 11905 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (𝐽 − 𝑗) ∈ ℤ) |
74 | | elnn0z 11806 |
. . . . . . . . . 10
⊢
((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℕ0 ↔
((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℤ ∧ 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) |
75 | 45, 52, 74 | sylanbrc 575 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈
ℕ0) |
76 | | zexpcl 13259 |
. . . . . . . . 9
⊢ (((𝐽 − 𝑗) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)) ∈ ℕ0) → ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))) ∈ ℤ) |
77 | 73, 75, 76 | syl2anc 576 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))) ∈ ℤ) |
78 | 68, 77 | zmulcld 11906 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) ∈ ℤ) |
79 | 36, 78 | ifcld 4395 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))))) ∈ ℤ) |
80 | 35, 79 | pm2.61dan 800 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶‘𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗)))) · ((𝐽 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶‘𝑙)‘𝑗))))) ∈ ℤ) |
81 | 31, 80 | eqeltrd 2867 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℤ) |
82 | 9, 81 | fprodzcl 15168 |
. . 3
⊢ ((𝜑 ∧ 𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℤ) |
83 | 8, 82 | fsumzcl 14952 |
. 2
⊢ (𝜑 → Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝐽) ∈ ℤ) |
84 | 30, 83 | eqeltrd 2867 |
1
⊢ (𝜑 → (𝐺‘𝐽) ∈ ℤ) |