Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem27 Structured version   Visualization version   GIF version

Theorem etransclem27 42423
Description: The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem27.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem27.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem27.p (𝜑𝑃 ∈ ℕ)
etransclem27.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem27.cfi (𝜑𝐶 ∈ Fin)
etransclem27.cf (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
etransclem27.g 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
etransclem27.jx (𝜑𝐽𝑋)
etransclem27.jz (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem27 (𝜑 → (𝐺𝐽) ∈ ℤ)
Distinct variable groups:   𝐶,𝑗,𝑙,𝑥   𝑥,𝐻   𝑗,𝐽,𝑙,𝑥   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑙,𝑥
Allowed substitution hints:   𝑃(𝑙)   𝑆(𝑗,𝑙)   𝐺(𝑥,𝑗,𝑙)   𝐻(𝑗,𝑙)   𝑀(𝑙)   𝑋(𝑙)

Proof of Theorem etransclem27
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem27.g . . 3 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
2 fveq2 6663 . . . . 5 (𝑥 = 𝐽 → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
32prodeq2ad 41749 . . . 4 (𝑥 = 𝐽 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
43sumeq2sdv 15049 . . 3 (𝑥 = 𝐽 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
5 etransclem27.jx . . 3 (𝜑𝐽𝑋)
6 etransclem27.cfi . . . . 5 (𝜑𝐶 ∈ Fin)
7 dmfi 8790 . . . . 5 (𝐶 ∈ Fin → dom 𝐶 ∈ Fin)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐶 ∈ Fin)
9 fzfid 13329 . . . . 5 ((𝜑𝑙 ∈ dom 𝐶) → (0...𝑀) ∈ Fin)
10 etransclem27.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
1110ad2antrr 722 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
12 etransclem27.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1312ad2antrr 722 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
14 etransclem27.p . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1514ad2antrr 722 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
16 etransclem27.h . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
17 etransclem5 42401 . . . . . . . 8 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
1816, 17eqtri 2841 . . . . . . 7 𝐻 = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
19 simpr 485 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
20 etransclem27.cf . . . . . . . . . 10 (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
2120ffvelrnda 6843 . . . . . . . . 9 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙) ∈ (ℕ0m (0...𝑀)))
22 elmapi 8417 . . . . . . . . 9 ((𝐶𝑙) ∈ (ℕ0m (0...𝑀)) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2423ffvelrnda 6843 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℕ0)
2511, 13, 15, 18, 19, 24etransclem20 42416 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗)):𝑋⟶ℂ)
265ad2antrr 722 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝐽𝑋)
2725, 26ffvelrnd 6844 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
289, 27fprodcl 15294 . . . 4 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
298, 28fsumcl 15078 . . 3 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
301, 4, 5, 29fvmptd3 6783 . 2 (𝜑 → (𝐺𝐽) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
3111, 13, 15, 18, 19, 24, 26etransclem21 42417 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))))
32 iftrue 4469 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) = 0)
33 0zd 11981 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → 0 ∈ ℤ)
3432, 33eqeltrd 2910 . . . . . . 7 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
3534adantl 482 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
36 0zd 11981 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ∈ ℤ)
37 nnm1nn0 11926 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3814, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3914nnnn0d 11943 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
4038, 39ifcld 4508 . . . . . . . . . . . . . . 15 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
4140nn0zd 12073 . . . . . . . . . . . . . 14 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4241ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4324nn0zd 12073 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4443adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4542, 44zsubcld 12080 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ)
4636, 42, 453jca 1120 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ))
4744zred 12075 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
4842zred 12075 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
49 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗))
5047, 48, 49nltled 10778 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
5148, 47subge0d 11218 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ↔ ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))
5250, 51mpbird 258 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))
53 0red 10632 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5424nn0red 11944 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
5540nn0red 11944 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5655ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5724nn0ge0d 11946 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝐶𝑙)‘𝑗))
5853, 54, 56, 57lesub2dd 11245 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0))
5956recnd 10657 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
6059subid1d 10974 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0) = if(𝑗 = 0, (𝑃 − 1), 𝑃))
6158, 60breqtrd 5083 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6261adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6346, 52, 62jca32 516 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ) ∧ (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))))
64 elfz2 12887 . . . . . . . . . . 11 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) ↔ ((0 ∈ ℤ ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ) ∧ (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))))
6563, 64sylibr 235 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)))
66 permnn 13674 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6765, 66syl 17 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6867nnzd 12074 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
69 etransclem27.jz . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
7069ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝐽 ∈ ℤ)
71 elfzelz 12896 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
7271ad2antlr 723 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝑗 ∈ ℤ)
7370, 72zsubcld 12080 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (𝐽𝑗) ∈ ℤ)
74 elnn0z 11982 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0 ↔ ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ ∧ 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))
7545, 52, 74sylanbrc 583 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0)
76 zexpcl 13432 . . . . . . . . 9 (((𝐽𝑗) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7773, 75, 76syl2anc 584 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7868, 77zmulcld 12081 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
7936, 78ifcld 4508 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
8035, 79pm2.61dan 809 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
8131, 80eqeltrd 2910 . . . 4 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
829, 81fprodzcl 15296 . . 3 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
838, 82fsumzcl 15080 . 2 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
8430, 83eqeltrd 2910 1 (𝜑 → (𝐺𝐽) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  ifcif 4463  {cpr 4559   class class class wbr 5057  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  ...cfz 12880  cexp 13417  !cfa 13621  Σcsu 15030  cprod 15247  t crest 16682  TopOpenctopn 16683  fldccnfld 20473   D𝑛 cdvn 24389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-prod 15248  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-dvn 24393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator