Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem27 Structured version   Visualization version   GIF version

Theorem etransclem27 43431
Description: The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem27.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem27.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem27.p (𝜑𝑃 ∈ ℕ)
etransclem27.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem27.cfi (𝜑𝐶 ∈ Fin)
etransclem27.cf (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
etransclem27.g 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
etransclem27.jx (𝜑𝐽𝑋)
etransclem27.jz (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem27 (𝜑 → (𝐺𝐽) ∈ ℤ)
Distinct variable groups:   𝐶,𝑗,𝑙,𝑥   𝑥,𝐻   𝑗,𝐽,𝑙,𝑥   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑙,𝑥
Allowed substitution hints:   𝑃(𝑙)   𝑆(𝑗,𝑙)   𝐺(𝑥,𝑗,𝑙)   𝐻(𝑗,𝑙)   𝑀(𝑙)   𝑋(𝑙)

Proof of Theorem etransclem27
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem27.g . . 3 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
2 fveq2 6706 . . . . 5 (𝑥 = 𝐽 → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
32prodeq2ad 42762 . . . 4 (𝑥 = 𝐽 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
43sumeq2sdv 15251 . . 3 (𝑥 = 𝐽 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
5 etransclem27.jx . . 3 (𝜑𝐽𝑋)
6 etransclem27.cfi . . . . 5 (𝜑𝐶 ∈ Fin)
7 dmfi 8943 . . . . 5 (𝐶 ∈ Fin → dom 𝐶 ∈ Fin)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐶 ∈ Fin)
9 fzfid 13529 . . . . 5 ((𝜑𝑙 ∈ dom 𝐶) → (0...𝑀) ∈ Fin)
10 etransclem27.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
12 etransclem27.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
14 etransclem27.p . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
16 etransclem27.h . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
17 etransclem5 43409 . . . . . . . 8 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
1816, 17eqtri 2762 . . . . . . 7 𝐻 = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
19 simpr 488 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
20 etransclem27.cf . . . . . . . . . 10 (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
2120ffvelrnda 6893 . . . . . . . . 9 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙) ∈ (ℕ0m (0...𝑀)))
22 elmapi 8519 . . . . . . . . 9 ((𝐶𝑙) ∈ (ℕ0m (0...𝑀)) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2423ffvelrnda 6893 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℕ0)
2511, 13, 15, 18, 19, 24etransclem20 43424 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗)):𝑋⟶ℂ)
265ad2antrr 726 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝐽𝑋)
2725, 26ffvelrnd 6894 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
289, 27fprodcl 15495 . . . 4 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
298, 28fsumcl 15280 . . 3 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
301, 4, 5, 29fvmptd3 6830 . 2 (𝜑 → (𝐺𝐽) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
3111, 13, 15, 18, 19, 24, 26etransclem21 43425 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))))
32 iftrue 4435 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) = 0)
33 0zd 12171 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → 0 ∈ ℤ)
3432, 33eqeltrd 2834 . . . . . . 7 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
3534adantl 485 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
36 0zd 12171 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ∈ ℤ)
37 nnm1nn0 12114 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3814, 37syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3914nnnn0d 12133 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ0)
4038, 39ifcld 4475 . . . . . . . . . . . . 13 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
4140nn0zd 12263 . . . . . . . . . . . 12 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4241ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4324nn0zd 12263 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4443adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4542, 44zsubcld 12270 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ)
4644zred 12265 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
4742zred 12265 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
48 simpr 488 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗))
4946, 47, 48nltled 10965 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
5047, 46subge0d 11405 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ↔ ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))
5149, 50mpbird 260 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))
52 0red 10819 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5324nn0red 12134 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
5440nn0red 12134 . . . . . . . . . . . . . . 15 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5624nn0ge0d 12136 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝐶𝑙)‘𝑗))
5752, 53, 55, 56lesub2dd 11432 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0))
5855recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
5958subid1d 11161 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0) = if(𝑗 = 0, (𝑃 − 1), 𝑃))
6057, 59breqtrd 5069 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6160adantr 484 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6236, 42, 45, 51, 61elfzd 13086 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)))
63 permnn 13875 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6462, 63syl 17 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6564nnzd 12264 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
66 etransclem27.jz . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
6766ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝐽 ∈ ℤ)
68 elfzelz 13095 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
6968ad2antlr 727 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝑗 ∈ ℤ)
7067, 69zsubcld 12270 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (𝐽𝑗) ∈ ℤ)
71 elnn0z 12172 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0 ↔ ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ ∧ 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))
7245, 51, 71sylanbrc 586 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0)
73 zexpcl 13633 . . . . . . . . 9 (((𝐽𝑗) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7470, 72, 73syl2anc 587 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7565, 74zmulcld 12271 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
7636, 75ifcld 4475 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7735, 76pm2.61dan 813 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7831, 77eqeltrd 2834 . . . 4 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
799, 78fprodzcl 15497 . . 3 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
808, 79fsumzcl 15282 . 2 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
8130, 80eqeltrd 2834 1 (𝜑 → (𝐺𝐽) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  ifcif 4429  {cpr 4533   class class class wbr 5043  cmpt 5124  dom cdm 5540  wf 6365  cfv 6369  (class class class)co 7202  m cmap 8497  Fincfn 8615  cc 10710  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  cn 11813  0cn0 12073  cz 12159  ...cfz 13078  cexp 13618  !cfa 13822  Σcsu 15232  cprod 15448  t crest 16897  TopOpenctopn 16898  fldccnfld 20335   D𝑛 cdvn 24733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-prod 15449  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736  df-dvn 24737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator