Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem27 Structured version   Visualization version   GIF version

Theorem etransclem27 46369
Description: The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem27.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem27.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem27.p (𝜑𝑃 ∈ ℕ)
etransclem27.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem27.cfi (𝜑𝐶 ∈ Fin)
etransclem27.cf (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
etransclem27.g 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
etransclem27.jx (𝜑𝐽𝑋)
etransclem27.jz (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem27 (𝜑 → (𝐺𝐽) ∈ ℤ)
Distinct variable groups:   𝐶,𝑗,𝑙,𝑥   𝑥,𝐻   𝑗,𝐽,𝑙,𝑥   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑙,𝑥
Allowed substitution hints:   𝑃(𝑙)   𝑆(𝑗,𝑙)   𝐺(𝑥,𝑗,𝑙)   𝐻(𝑗,𝑙)   𝑀(𝑙)   𝑋(𝑙)

Proof of Theorem etransclem27
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem27.g . . 3 𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))
2 fveq2 6822 . . . . 5 (𝑥 = 𝐽 → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
32prodeq2ad 45702 . . . 4 (𝑥 = 𝐽 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
43sumeq2sdv 15610 . . 3 (𝑥 = 𝐽 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
5 etransclem27.jx . . 3 (𝜑𝐽𝑋)
6 etransclem27.cfi . . . . 5 (𝜑𝐶 ∈ Fin)
7 dmfi 9219 . . . . 5 (𝐶 ∈ Fin → dom 𝐶 ∈ Fin)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐶 ∈ Fin)
9 fzfid 13880 . . . . 5 ((𝜑𝑙 ∈ dom 𝐶) → (0...𝑀) ∈ Fin)
10 etransclem27.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
12 etransclem27.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
14 etransclem27.p . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
16 etransclem27.h . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
17 etransclem5 46347 . . . . . . . 8 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
1816, 17eqtri 2754 . . . . . . 7 𝐻 = (𝑧 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑧)↑if(𝑧 = 0, (𝑃 − 1), 𝑃))))
19 simpr 484 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
20 etransclem27.cf . . . . . . . . . 10 (𝜑𝐶:dom 𝐶⟶(ℕ0m (0...𝑀)))
2120ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙) ∈ (ℕ0m (0...𝑀)))
22 elmapi 8773 . . . . . . . . 9 ((𝐶𝑙) ∈ (ℕ0m (0...𝑀)) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ dom 𝐶) → (𝐶𝑙):(0...𝑀)⟶ℕ0)
2423ffvelcdmda 7017 . . . . . . 7 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℕ0)
2511, 13, 15, 18, 19, 24etransclem20 46362 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗)):𝑋⟶ℂ)
265ad2antrr 726 . . . . . 6 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 𝐽𝑋)
2725, 26ffvelcdmd 7018 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
289, 27fprodcl 15859 . . . 4 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
298, 28fsumcl 15640 . . 3 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℂ)
301, 4, 5, 29fvmptd3 6952 . 2 (𝜑 → (𝐺𝐽) = Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽))
3111, 13, 15, 18, 19, 24, 26etransclem21 46363 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))))
32 iftrue 4478 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) = 0)
33 0zd 12480 . . . . . . . 8 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → 0 ∈ ℤ)
3432, 33eqeltrd 2831 . . . . . . 7 (if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
3534adantl 481 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
36 0zd 12480 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ∈ ℤ)
37 nnm1nn0 12422 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3814, 37syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3914nnnn0d 12442 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ0)
4038, 39ifcld 4519 . . . . . . . . . . . . 13 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
4140nn0zd 12494 . . . . . . . . . . . 12 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4241ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
4324nn0zd 12494 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4443adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℤ)
4542, 44zsubcld 12582 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ)
4644zred 12577 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
4742zred 12577 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
48 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗))
4946, 47, 48nltled 11263 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
5047, 46subge0d 11707 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ↔ ((𝐶𝑙)‘𝑗) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃)))
5149, 50mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))
52 0red 11115 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5324nn0red 12443 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐶𝑙)‘𝑗) ∈ ℝ)
5440nn0red 12443 . . . . . . . . . . . . . . 15 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5624nn0ge0d 12445 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝐶𝑙)‘𝑗))
5752, 53, 55, 56lesub2dd 11734 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0))
5855recnd 11140 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
5958subid1d 11461 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − 0) = if(𝑗 = 0, (𝑃 − 1), 𝑃))
6057, 59breqtrd 5115 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ≤ if(𝑗 = 0, (𝑃 − 1), 𝑃))
6236, 42, 45, 51, 61elfzd 13415 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)))
63 permnn 14233 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ (0...if(𝑗 = 0, (𝑃 − 1), 𝑃)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6462, 63syl 17 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℕ)
6564nnzd 12495 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
66 etransclem27.jz . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
6766ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝐽 ∈ ℤ)
68 elfzelz 13424 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
6968ad2antlr 727 . . . . . . . . . 10 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → 𝑗 ∈ ℤ)
7067, 69zsubcld 12582 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (𝐽𝑗) ∈ ℤ)
71 elnn0z 12481 . . . . . . . . . 10 ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0 ↔ ((if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℤ ∧ 0 ≤ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))
7245, 51, 71sylanbrc 583 . . . . . . . . 9 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0)
73 zexpcl 13983 . . . . . . . . 9 (((𝐽𝑗) ∈ ℤ ∧ (if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)) ∈ ℕ0) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7470, 72, 73syl2anc 584 . . . . . . . 8 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))) ∈ ℤ)
7565, 74zmulcld 12583 . . . . . . 7 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) ∈ ℤ)
7636, 75ifcld 4519 . . . . . 6 ((((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7735, 76pm2.61dan 812 . . . . 5 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < ((𝐶𝑙)‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗)))) · ((𝐽𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − ((𝐶𝑙)‘𝑗))))) ∈ ℤ)
7831, 77eqeltrd 2831 . . . 4 (((𝜑𝑙 ∈ dom 𝐶) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
799, 78fprodzcl 15861 . . 3 ((𝜑𝑙 ∈ dom 𝐶) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
808, 79fsumzcl 15642 . 2 (𝜑 → Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝐽) ∈ ℤ)
8130, 80eqeltrd 2831 1 (𝜑 → (𝐺𝐽) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472  {cpr 4575   class class class wbr 5089  cmpt 5170  dom cdm 5614  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  !cfa 14180  Σcsu 15593  cprod 15810  t crest 17324  TopOpenctopn 17325  fldccnfld 21291   D𝑛 cdvn 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-dvn 25796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator