Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem38 Structured version   Visualization version   GIF version

Theorem etransclem38 46263
Description: 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem38.p (𝜑𝑃 ∈ ℕ)
etransclem38.m (𝜑𝑀 ∈ ℕ0)
etransclem38.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem38.i (𝜑𝐼 ∈ ℕ0)
etransclem38.j (𝜑𝐽 ∈ (0...𝑀))
etransclem38.ij (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
etransclem38.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
Assertion
Ref Expression
etransclem38 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑛,𝑥   𝐼,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem38
Dummy variables 𝑑 𝑒 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem38.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem38.i . . . 4 (𝜑𝐼 ∈ ℕ0)
31, 2etransclem16 46241 . . 3 (𝜑 → (𝐶𝐼) ∈ Fin)
4 etransclem38.p . . . 4 (𝜑𝑃 ∈ ℕ)
54nnzd 12532 . . 3 (𝜑𝑃 ∈ ℤ)
64adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∈ ℕ)
7 etransclem38.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
87adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑀 ∈ ℕ0)
92adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐼 ∈ ℕ0)
10 etransclem11 46236 . . . . . 6 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚})
11 etransclem11 46236 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
121, 10, 113eqtri 2756 . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
13 simpr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ (𝐶𝐼))
14 etransclem38.j . . . . . 6 (𝜑𝐽 ∈ (0...𝑀))
1514adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ (0...𝑀))
16 eqid 2729 . . . . 5 (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))))
176, 8, 9, 12, 13, 15, 16etransclem28 46253 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
18 nnm1nn0 12459 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2019faccld 14225 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2120nnzd 12532 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
2221adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℤ)
2320nnne0d 12212 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
2423adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ≠ 0)
2514elfzelzd 13462 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2625adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ ℤ)
276, 8, 9, 26, 12, 13etransclem26 46251 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
28 dvdsval2 16201 . . . . 5 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
2922, 24, 27, 28syl3anc 1373 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
3017, 29mpbid 232 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
31 pm3.22 459 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3231adantll 714 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
33 etransclem38.ij . . . . . . . 8 (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3433ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3532, 34pm2.65da 816 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → ¬ 𝐼 = (𝑃 − 1))
3635neqned 2932 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝐼 ≠ (𝑃 − 1))
374ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∈ ℕ)
387ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑀 ∈ ℕ0)
392ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ∈ ℕ0)
40 simpr 484 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ≠ (𝑃 − 1))
41 simplr 768 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐽 = 0)
4213ad2antrr 726 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑐 ∈ (𝐶𝐼))
4337, 38, 39, 40, 41, 12, 42etransclem24 46249 . . . . 5 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
4436, 43mpdan 687 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
454ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
467ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
472ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐼 ∈ ℕ0)
481, 2etransclem12 46237 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
5013, 49eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
51 rabid 3424 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼} ↔ (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5250, 51sylib 218 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5352simpld 494 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)))
54 elmapi 8799 . . . . . . . . 9 (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5655adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑐:(0...𝑀)⟶(0...𝐼))
5752simprd 495 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
5857adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
59 1zzd 12540 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
607nn0zd 12531 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
6160adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
6225adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
63 elfznn0 13557 . . . . . . . . . . . . 13 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
6414, 63syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ0)
65 neqne 2933 . . . . . . . . . . . 12 𝐽 = 0 → 𝐽 ≠ 0)
6664, 65anim12i 613 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → (𝐽 ∈ ℕ0𝐽 ≠ 0))
67 elnnne0 12432 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
6866, 67sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
6968nnge1d 12210 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
70 elfzle2 13465 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
7114, 70syl 17 . . . . . . . . . 10 (𝜑𝐽𝑀)
7271adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
7359, 61, 62, 69, 72elfzd 13452 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7473adantlr 715 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7545, 46, 47, 56, 58, 16, 74etransclem25 46250 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
764nncnd 12178 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
77 1cnd 11145 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
7876, 77npcand 11513 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
7978eqcomd 2735 . . . . . . . . 9 (𝜑𝑃 = ((𝑃 − 1) + 1))
8079fveq2d 6844 . . . . . . . 8 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
81 facp1 14219 . . . . . . . . 9 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8219, 81syl 17 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8378oveq2d 7385 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
8420nncnd 12178 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
8584, 76mulcomd 11171 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1))))
8683, 85eqtrd 2764 . . . . . . . 8 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1))))
8780, 82, 863eqtrrd 2769 . . . . . . 7 (𝜑 → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8887ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8927zcnd 12615 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
9084adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℂ)
9189, 90, 24divcan1d 11935 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9291adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9375, 88, 923brtr4d 5134 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))))
945ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℤ)
9530adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
9621ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
9723ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ≠ 0)
98 dvdsmulcr 16231 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0)) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
9994, 95, 96, 97, 98syl112anc 1376 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10093, 99mpbid 232 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
10144, 100pm2.61dan 812 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1023, 5, 30, 101fsumdvds 16254 . 2 (𝜑𝑃 ∥ Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
103 reelprrecn 11136 . . . . . 6 ℝ ∈ {ℝ, ℂ}
104103a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
105 reopn 45280 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
106 tgioo4 24726 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
107105, 106eleqtri 2826 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
108107a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
109 etransclem38.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
110 etransclem5 46230 . . . . 5 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
111 fzssre 45305 . . . . . 6 (0...𝑀) ⊆ ℝ
112111, 14sselid 3941 . . . . 5 (𝜑𝐽 ∈ ℝ)
113104, 108, 4, 7, 109, 2, 110, 1, 112etransclem31 46256 . . . 4 (𝜑 → (((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) = Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
114113oveq1d 7384 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1153, 84, 89, 23fsumdivc 15728 . . 3 (𝜑 → (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
116114, 115eqtrd 2764 . 2 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
117102, 116breqtrrd 5130 1 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3402  ifcif 4484  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  (,)cioo 13282  ...cfz 13444  cexp 14002  !cfa 14214  Σcsu 15628  cprod 15845  cdvds 16198  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21296   D𝑛 cdvn 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-prod 15846  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-dvn 25802
This theorem is referenced by:  etransclem44  46269
  Copyright terms: Public domain W3C validator