Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem38 Structured version   Visualization version   GIF version

Theorem etransclem38 46287
Description: 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem38.p (𝜑𝑃 ∈ ℕ)
etransclem38.m (𝜑𝑀 ∈ ℕ0)
etransclem38.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem38.i (𝜑𝐼 ∈ ℕ0)
etransclem38.j (𝜑𝐽 ∈ (0...𝑀))
etransclem38.ij (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
etransclem38.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
Assertion
Ref Expression
etransclem38 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑛,𝑥   𝐼,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem38
Dummy variables 𝑑 𝑒 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem38.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem38.i . . . 4 (𝜑𝐼 ∈ ℕ0)
31, 2etransclem16 46265 . . 3 (𝜑 → (𝐶𝐼) ∈ Fin)
4 etransclem38.p . . . 4 (𝜑𝑃 ∈ ℕ)
54nnzd 12640 . . 3 (𝜑𝑃 ∈ ℤ)
64adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∈ ℕ)
7 etransclem38.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
87adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑀 ∈ ℕ0)
92adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐼 ∈ ℕ0)
10 etransclem11 46260 . . . . . 6 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚})
11 etransclem11 46260 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
121, 10, 113eqtri 2769 . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
13 simpr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ (𝐶𝐼))
14 etransclem38.j . . . . . 6 (𝜑𝐽 ∈ (0...𝑀))
1514adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ (0...𝑀))
16 eqid 2737 . . . . 5 (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))))
176, 8, 9, 12, 13, 15, 16etransclem28 46277 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
18 nnm1nn0 12567 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2019faccld 14323 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2120nnzd 12640 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
2221adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℤ)
2320nnne0d 12316 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
2423adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ≠ 0)
2514elfzelzd 13565 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2625adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ ℤ)
276, 8, 9, 26, 12, 13etransclem26 46275 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
28 dvdsval2 16293 . . . . 5 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
2922, 24, 27, 28syl3anc 1373 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
3017, 29mpbid 232 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
31 pm3.22 459 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3231adantll 714 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
33 etransclem38.ij . . . . . . . 8 (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3433ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3532, 34pm2.65da 817 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → ¬ 𝐼 = (𝑃 − 1))
3635neqned 2947 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝐼 ≠ (𝑃 − 1))
374ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∈ ℕ)
387ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑀 ∈ ℕ0)
392ad3antrrr 730 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ∈ ℕ0)
40 simpr 484 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ≠ (𝑃 − 1))
41 simplr 769 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐽 = 0)
4213ad2antrr 726 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑐 ∈ (𝐶𝐼))
4337, 38, 39, 40, 41, 12, 42etransclem24 46273 . . . . 5 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
4436, 43mpdan 687 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
454ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
467ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
472ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐼 ∈ ℕ0)
481, 2etransclem12 46261 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
5013, 49eleqtrd 2843 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
51 rabid 3458 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼} ↔ (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5250, 51sylib 218 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5352simpld 494 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)))
54 elmapi 8889 . . . . . . . . 9 (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5655adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑐:(0...𝑀)⟶(0...𝐼))
5752simprd 495 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
5857adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
59 1zzd 12648 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
607nn0zd 12639 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
6160adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
6225adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
63 elfznn0 13660 . . . . . . . . . . . . 13 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
6414, 63syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ0)
65 neqne 2948 . . . . . . . . . . . 12 𝐽 = 0 → 𝐽 ≠ 0)
6664, 65anim12i 613 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → (𝐽 ∈ ℕ0𝐽 ≠ 0))
67 elnnne0 12540 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
6866, 67sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
6968nnge1d 12314 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
70 elfzle2 13568 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
7114, 70syl 17 . . . . . . . . . 10 (𝜑𝐽𝑀)
7271adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
7359, 61, 62, 69, 72elfzd 13555 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7473adantlr 715 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7545, 46, 47, 56, 58, 16, 74etransclem25 46274 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
764nncnd 12282 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
77 1cnd 11256 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
7876, 77npcand 11624 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
7978eqcomd 2743 . . . . . . . . 9 (𝜑𝑃 = ((𝑃 − 1) + 1))
8079fveq2d 6910 . . . . . . . 8 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
81 facp1 14317 . . . . . . . . 9 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8219, 81syl 17 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8378oveq2d 7447 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
8420nncnd 12282 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
8584, 76mulcomd 11282 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1))))
8683, 85eqtrd 2777 . . . . . . . 8 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1))))
8780, 82, 863eqtrrd 2782 . . . . . . 7 (𝜑 → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8887ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8927zcnd 12723 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
9084adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℂ)
9189, 90, 24divcan1d 12044 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9291adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9375, 88, 923brtr4d 5175 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))))
945ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℤ)
9530adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
9621ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
9723ad2antrr 726 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ≠ 0)
98 dvdsmulcr 16323 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0)) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
9994, 95, 96, 97, 98syl112anc 1376 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10093, 99mpbid 232 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
10144, 100pm2.61dan 813 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1023, 5, 30, 101fsumdvds 16345 . 2 (𝜑𝑃 ∥ Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
103 reelprrecn 11247 . . . . . 6 ℝ ∈ {ℝ, ℂ}
104103a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
105 reopn 45301 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
106 tgioo4 24826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
107105, 106eleqtri 2839 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
108107a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
109 etransclem38.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
110 etransclem5 46254 . . . . 5 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
111 fzssre 45326 . . . . . 6 (0...𝑀) ⊆ ℝ
112111, 14sselid 3981 . . . . 5 (𝜑𝐽 ∈ ℝ)
113104, 108, 4, 7, 109, 2, 110, 1, 112etransclem31 46280 . . . 4 (𝜑 → (((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) = Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
114113oveq1d 7446 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1153, 84, 89, 23fsumdivc 15822 . . 3 (𝜑 → (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
116114, 115eqtrd 2777 . 2 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
117102, 116breqtrrd 5171 1 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  ifcif 4525  {cpr 4628   class class class wbr 5143  cmpt 5225  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  (,)cioo 13387  ...cfz 13547  cexp 14102  !cfa 14312  Σcsu 15722  cprod 15939  cdvds 16290  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364   D𝑛 cdvn 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-prod 15940  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-dvn 25903
This theorem is referenced by:  etransclem44  46293
  Copyright terms: Public domain W3C validator