Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem38 Structured version   Visualization version   GIF version

Theorem etransclem38 43703
Description: 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem38.p (𝜑𝑃 ∈ ℕ)
etransclem38.m (𝜑𝑀 ∈ ℕ0)
etransclem38.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem38.i (𝜑𝐼 ∈ ℕ0)
etransclem38.j (𝜑𝐽 ∈ (0...𝑀))
etransclem38.ij (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
etransclem38.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
Assertion
Ref Expression
etransclem38 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑛,𝑥   𝐼,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem38
Dummy variables 𝑑 𝑒 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem38.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem38.i . . . 4 (𝜑𝐼 ∈ ℕ0)
31, 2etransclem16 43681 . . 3 (𝜑 → (𝐶𝐼) ∈ Fin)
4 etransclem38.p . . . 4 (𝜑𝑃 ∈ ℕ)
54nnzd 12354 . . 3 (𝜑𝑃 ∈ ℤ)
64adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∈ ℕ)
7 etransclem38.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
87adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑀 ∈ ℕ0)
92adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐼 ∈ ℕ0)
10 etransclem11 43676 . . . . . 6 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚})
11 etransclem11 43676 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
121, 10, 113eqtri 2770 . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
13 simpr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ (𝐶𝐼))
14 etransclem38.j . . . . . 6 (𝜑𝐽 ∈ (0...𝑀))
1514adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ (0...𝑀))
16 eqid 2738 . . . . 5 (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))))
176, 8, 9, 12, 13, 15, 16etransclem28 43693 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
18 nnm1nn0 12204 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2019faccld 13926 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2120nnzd 12354 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
2221adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℤ)
2320nnne0d 11953 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
2423adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ≠ 0)
2514elfzelzd 13186 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2625adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ ℤ)
276, 8, 9, 26, 12, 13etransclem26 43691 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
28 dvdsval2 15894 . . . . 5 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
2922, 24, 27, 28syl3anc 1369 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
3017, 29mpbid 231 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
31 pm3.22 459 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3231adantll 710 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
33 etransclem38.ij . . . . . . . 8 (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3433ad3antrrr 726 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3532, 34pm2.65da 813 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → ¬ 𝐼 = (𝑃 − 1))
3635neqned 2949 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝐼 ≠ (𝑃 − 1))
374ad3antrrr 726 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∈ ℕ)
387ad3antrrr 726 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑀 ∈ ℕ0)
392ad3antrrr 726 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ∈ ℕ0)
40 simpr 484 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ≠ (𝑃 − 1))
41 simplr 765 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐽 = 0)
4213ad2antrr 722 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑐 ∈ (𝐶𝐼))
4337, 38, 39, 40, 41, 12, 42etransclem24 43689 . . . . 5 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
4436, 43mpdan 683 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
454ad2antrr 722 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
467ad2antrr 722 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
472ad2antrr 722 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐼 ∈ ℕ0)
481, 2etransclem12 43677 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
5013, 49eleqtrd 2841 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
51 rabid 3304 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼} ↔ (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5250, 51sylib 217 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5352simpld 494 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)))
54 elmapi 8595 . . . . . . . . 9 (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5655adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑐:(0...𝑀)⟶(0...𝐼))
5752simprd 495 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
5857adantr 480 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
59 1zzd 12281 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
607nn0zd 12353 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
6160adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
6225adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
63 elfznn0 13278 . . . . . . . . . . . . 13 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
6414, 63syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ0)
65 neqne 2950 . . . . . . . . . . . 12 𝐽 = 0 → 𝐽 ≠ 0)
6664, 65anim12i 612 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → (𝐽 ∈ ℕ0𝐽 ≠ 0))
67 elnnne0 12177 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
6866, 67sylibr 233 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
6968nnge1d 11951 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
70 elfzle2 13189 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
7114, 70syl 17 . . . . . . . . . 10 (𝜑𝐽𝑀)
7271adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
7359, 61, 62, 69, 72elfzd 13176 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7473adantlr 711 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7545, 46, 47, 56, 58, 16, 74etransclem25 43690 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
764nncnd 11919 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
77 1cnd 10901 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
7876, 77npcand 11266 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
7978eqcomd 2744 . . . . . . . . 9 (𝜑𝑃 = ((𝑃 − 1) + 1))
8079fveq2d 6760 . . . . . . . 8 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
81 facp1 13920 . . . . . . . . 9 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8219, 81syl 17 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8378oveq2d 7271 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
8420nncnd 11919 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
8584, 76mulcomd 10927 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1))))
8683, 85eqtrd 2778 . . . . . . . 8 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1))))
8780, 82, 863eqtrrd 2783 . . . . . . 7 (𝜑 → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8887ad2antrr 722 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8927zcnd 12356 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
9084adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℂ)
9189, 90, 24divcan1d 11682 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9291adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9375, 88, 923brtr4d 5102 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))))
945ad2antrr 722 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℤ)
9530adantr 480 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
9621ad2antrr 722 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
9723ad2antrr 722 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ≠ 0)
98 dvdsmulcr 15923 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0)) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
9994, 95, 96, 97, 98syl112anc 1372 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10093, 99mpbid 231 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
10144, 100pm2.61dan 809 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1023, 5, 30, 101fsumdvds 15945 . 2 (𝜑𝑃 ∥ Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
103 reelprrecn 10894 . . . . . 6 ℝ ∈ {ℝ, ℂ}
104103a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
105 reopn 42717 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
106 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107106tgioo2 23872 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
108105, 107eleqtri 2837 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
109108a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
110 etransclem38.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
111 etransclem5 43670 . . . . 5 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
112 fzssre 42743 . . . . . 6 (0...𝑀) ⊆ ℝ
113112, 14sselid 3915 . . . . 5 (𝜑𝐽 ∈ ℝ)
114104, 109, 4, 7, 110, 2, 111, 1, 113etransclem31 43696 . . . 4 (𝜑 → (((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) = Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
115114oveq1d 7270 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1163, 84, 89, 23fsumdivc 15426 . . 3 (𝜑 → (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
117115, 116eqtrd 2778 . 2 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
118102, 117breqtrrd 5098 1 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  (,)cioo 13008  ...cfz 13168  cexp 13710  !cfa 13915  Σcsu 15325  cprod 15543  cdvds 15891  t crest 17048  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510   D𝑛 cdvn 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-prod 15544  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-dvn 24937
This theorem is referenced by:  etransclem44  43709
  Copyright terms: Public domain W3C validator