Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem38 Structured version   Visualization version   GIF version

Theorem etransclem38 44503
Description: 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem38.p (𝜑𝑃 ∈ ℕ)
etransclem38.m (𝜑𝑀 ∈ ℕ0)
etransclem38.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem38.i (𝜑𝐼 ∈ ℕ0)
etransclem38.j (𝜑𝐽 ∈ (0...𝑀))
etransclem38.ij (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
etransclem38.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
Assertion
Ref Expression
etransclem38 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑛,𝑥   𝐼,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem38
Dummy variables 𝑑 𝑒 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem38.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem38.i . . . 4 (𝜑𝐼 ∈ ℕ0)
31, 2etransclem16 44481 . . 3 (𝜑 → (𝐶𝐼) ∈ Fin)
4 etransclem38.p . . . 4 (𝜑𝑃 ∈ ℕ)
54nnzd 12526 . . 3 (𝜑𝑃 ∈ ℤ)
64adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∈ ℕ)
7 etransclem38.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
87adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑀 ∈ ℕ0)
92adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐼 ∈ ℕ0)
10 etransclem11 44476 . . . . . 6 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚})
11 etransclem11 44476 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
121, 10, 113eqtri 2768 . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
13 simpr 485 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ (𝐶𝐼))
14 etransclem38.j . . . . . 6 (𝜑𝐽 ∈ (0...𝑀))
1514adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ (0...𝑀))
16 eqid 2736 . . . . 5 (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))))
176, 8, 9, 12, 13, 15, 16etransclem28 44493 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
18 nnm1nn0 12454 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2019faccld 14184 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2120nnzd 12526 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
2221adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℤ)
2320nnne0d 12203 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
2423adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ≠ 0)
2514elfzelzd 13442 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2625adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ ℤ)
276, 8, 9, 26, 12, 13etransclem26 44491 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
28 dvdsval2 16139 . . . . 5 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
2922, 24, 27, 28syl3anc 1371 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
3017, 29mpbid 231 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
31 pm3.22 460 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3231adantll 712 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
33 etransclem38.ij . . . . . . . 8 (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3433ad3antrrr 728 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3532, 34pm2.65da 815 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → ¬ 𝐼 = (𝑃 − 1))
3635neqned 2950 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝐼 ≠ (𝑃 − 1))
374ad3antrrr 728 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∈ ℕ)
387ad3antrrr 728 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑀 ∈ ℕ0)
392ad3antrrr 728 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ∈ ℕ0)
40 simpr 485 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ≠ (𝑃 − 1))
41 simplr 767 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐽 = 0)
4213ad2antrr 724 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑐 ∈ (𝐶𝐼))
4337, 38, 39, 40, 41, 12, 42etransclem24 44489 . . . . 5 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
4436, 43mpdan 685 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
454ad2antrr 724 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
467ad2antrr 724 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
472ad2antrr 724 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐼 ∈ ℕ0)
481, 2etransclem12 44477 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
4948adantr 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
5013, 49eleqtrd 2840 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
51 rabid 3427 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼} ↔ (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5250, 51sylib 217 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5352simpld 495 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)))
54 elmapi 8787 . . . . . . . . 9 (𝑐 ∈ ((0...𝐼) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5655adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑐:(0...𝑀)⟶(0...𝐼))
5752simprd 496 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
5857adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
59 1zzd 12534 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
607nn0zd 12525 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
6160adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
6225adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
63 elfznn0 13534 . . . . . . . . . . . . 13 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
6414, 63syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ0)
65 neqne 2951 . . . . . . . . . . . 12 𝐽 = 0 → 𝐽 ≠ 0)
6664, 65anim12i 613 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → (𝐽 ∈ ℕ0𝐽 ≠ 0))
67 elnnne0 12427 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
6866, 67sylibr 233 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
6968nnge1d 12201 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
70 elfzle2 13445 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
7114, 70syl 17 . . . . . . . . . 10 (𝜑𝐽𝑀)
7271adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
7359, 61, 62, 69, 72elfzd 13432 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7473adantlr 713 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7545, 46, 47, 56, 58, 16, 74etransclem25 44490 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
764nncnd 12169 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
77 1cnd 11150 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
7876, 77npcand 11516 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
7978eqcomd 2742 . . . . . . . . 9 (𝜑𝑃 = ((𝑃 − 1) + 1))
8079fveq2d 6846 . . . . . . . 8 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
81 facp1 14178 . . . . . . . . 9 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8219, 81syl 17 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8378oveq2d 7373 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
8420nncnd 12169 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
8584, 76mulcomd 11176 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1))))
8683, 85eqtrd 2776 . . . . . . . 8 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1))))
8780, 82, 863eqtrrd 2781 . . . . . . 7 (𝜑 → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8887ad2antrr 724 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
8927zcnd 12608 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
9084adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℂ)
9189, 90, 24divcan1d 11932 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9291adantr 481 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9375, 88, 923brtr4d 5137 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))))
945ad2antrr 724 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℤ)
9530adantr 481 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
9621ad2antrr 724 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
9723ad2antrr 724 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ≠ 0)
98 dvdsmulcr 16168 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0)) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
9994, 95, 96, 97, 98syl112anc 1374 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10093, 99mpbid 231 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
10144, 100pm2.61dan 811 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1023, 5, 30, 101fsumdvds 16190 . 2 (𝜑𝑃 ∥ Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
103 reelprrecn 11143 . . . . . 6 ℝ ∈ {ℝ, ℂ}
104103a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
105 reopn 43513 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
106 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107106tgioo2 24166 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
108105, 107eleqtri 2836 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
109108a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
110 etransclem38.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
111 etransclem5 44470 . . . . 5 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
112 fzssre 43538 . . . . . 6 (0...𝑀) ⊆ ℝ
113112, 14sselid 3942 . . . . 5 (𝜑𝐽 ∈ ℝ)
114104, 109, 4, 7, 110, 2, 111, 1, 113etransclem31 44496 . . . 4 (𝜑 → (((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) = Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
115114oveq1d 7372 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1163, 84, 89, 23fsumdivc 15671 . . 3 (𝜑 → (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
117115, 116eqtrd 2776 . 2 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
118102, 117breqtrrd 5133 1 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  ifcif 4486  {cpr 4588   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  (,)cioo 13264  ...cfz 13424  cexp 13967  !cfa 14173  Σcsu 15570  cprod 15788  cdvds 16136  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796   D𝑛 cdvn 25228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-prod 15789  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-dvn 25232
This theorem is referenced by:  etransclem44  44509
  Copyright terms: Public domain W3C validator