Step | Hyp | Ref
| Expression |
1 | | etransclem46.l |
. . . 4
⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥)) |
3 | | etransclem46.h |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥))) |
4 | 3 | oveq2i 7286 |
. . . . . . . . . . . . 13
⊢ (ℝ
D 𝑂) = (ℝ D (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
5 | 4 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D 𝑂) = (ℝ D (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥))))) |
6 | | etransclem46.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
7 | 6 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ,
ℂ}) |
8 | | ere 15798 |
. . . . . . . . . . . . . . . . . . . 20
⊢ e ∈
ℝ |
9 | 8 | recni 10989 |
. . . . . . . . . . . . . . . . . . 19
⊢ e ∈
ℂ |
10 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → e ∈
ℂ) |
11 | | recn 10961 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
12 | 11 | negcld 11319 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℂ) |
13 | 10, 12 | cxpcld 25863 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ →
(e↑𝑐-𝑥) ∈ ℂ) |
14 | 13 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(e↑𝑐-𝑥) ∈ ℂ) |
15 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
16 | | fzfid 13693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0...𝑅) ∈ Fin) |
17 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑅) → 𝑖 ∈ ℕ0) |
18 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ℝ
∈ {ℝ, ℂ}) |
19 | | etransclem46.x |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ)) |
21 | | etransclem46.p |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑃 ∈ ℕ) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈
ℕ) |
23 | | etransclem46.m |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑀 = (deg‘𝑄) |
24 | | etransclem46.q |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
25 | 24 | eldifad 3899 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑄 ∈
(Poly‘ℤ)) |
26 | | dgrcl 25394 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑄 ∈ (Poly‘ℤ)
→ (deg‘𝑄) ∈
ℕ0) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (deg‘𝑄) ∈
ℕ0) |
28 | 23, 27 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
29 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑀 ∈
ℕ0) |
30 | | etransclem46.f |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
31 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
32 | 18, 20, 22, 29, 30, 31 | etransclem33 43808 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) |
33 | 17, 32 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛
𝐹)‘𝑖):ℝ⟶ℂ) |
34 | 33 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛
𝐹)‘𝑖):ℝ⟶ℂ) |
35 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ (0...𝑅)) → 𝑥 ∈ ℝ) |
36 | 34, 35 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ (0...𝑅)) → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑥) ∈ ℂ) |
37 | 16, 36 | fsumcl 15445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥) ∈ ℂ) |
38 | | etransclem46.g |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
39 | 38 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧
Σ𝑖 ∈ (0...𝑅)(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑥) ∈ ℂ) → (𝐺‘𝑥) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
40 | 15, 37, 39 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
41 | 40, 37 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℂ) |
42 | 14, 41 | mulcld 10995 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
43 | 42 | negcld 11319 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
-((e↑𝑐-𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
44 | 43 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ ℝ) →
-((e↑𝑐-𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
45 | 6, 19 | dvdmsscn 43477 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ⊆
ℂ) |
46 | 45, 21, 30 | etransclem8 43783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
47 | 46 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℂ) |
48 | 14, 47 | mulcld 10995 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
49 | 48 | negcld 11319 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
-((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
50 | 49 | negcld 11319 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
--((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
51 | 50 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ ℝ) →
--((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
52 | 8 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ → e ∈
ℝ) |
53 | | 0re 10977 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
54 | | epos 15916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 <
e |
55 | 53, 8, 54 | ltleii 11098 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
e |
56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ → 0 ≤
e) |
57 | | renegcl 11284 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
58 | 52, 56, 57 | recxpcld 25878 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ →
(e↑𝑐-𝑥) ∈ ℝ) |
59 | 58 | renegcld 11402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ →
-(e↑𝑐-𝑥) ∈ ℝ) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
-(e↑𝑐-𝑥) ∈ ℝ) |
61 | | reelprrecn 10963 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℝ
∈ {ℝ, ℂ} |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ ℝ ∈ {ℝ, ℂ}) |
63 | | cnelprrecn 10964 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℂ
∈ {ℝ, ℂ} |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
65 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⊤ ∧ 𝑥
∈ ℝ) → -𝑥
∈ ℂ) |
66 | | neg1rr 12088 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ -1 ∈
ℝ |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⊤ ∧ 𝑥
∈ ℝ) → -1 ∈ ℝ) |
68 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℂ → e ∈
ℂ) |
69 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℂ → 𝑦 ∈
ℂ) |
70 | 68, 69 | cxpcld 25863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℂ →
(e↑𝑐𝑦) ∈ ℂ) |
71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⊤ ∧ 𝑦
∈ ℂ) → (e↑𝑐𝑦) ∈ ℂ) |
72 | 11 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ 𝑥
∈ ℝ) → 𝑥
∈ ℂ) |
73 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ 𝑥
∈ ℝ) → 1 ∈ ℝ) |
74 | 62 | dvmptid 25121 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ 𝑥)) =
(𝑥 ∈ ℝ ↦
1)) |
75 | 62, 72, 73, 74 | dvmptneg 25130 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ -𝑥)) =
(𝑥 ∈ ℝ ↦
-1)) |
76 | | epr 15917 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ e ∈
ℝ+ |
77 | | dvcxp2 25894 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (e ∈
ℝ+ → (ℂ D (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))) = (𝑦 ∈ ℂ ↦ ((log‘e)
· (e↑𝑐𝑦)))) |
78 | 76, 77 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℂ
D (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))) = (𝑦 ∈ ℂ ↦ ((log‘e)
· (e↑𝑐𝑦))) |
79 | | loge 25742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(log‘e) = 1 |
80 | 79 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((log‘e) · (e↑𝑐𝑦)) = (1 ·
(e↑𝑐𝑦)) |
81 | 70 | mulid2d 10993 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℂ → (1
· (e↑𝑐𝑦)) = (e↑𝑐𝑦)) |
82 | 80, 81 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℂ →
((log‘e) · (e↑𝑐𝑦)) = (e↑𝑐𝑦)) |
83 | 82 | mpteq2ia 5177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℂ ↦
((log‘e) · (e↑𝑐𝑦))) = (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦)) |
84 | 78, 83 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℂ
D (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))) = (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦)) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ (e↑𝑐𝑦))) = (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))) |
86 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = -𝑥 → (e↑𝑐𝑦) =
(e↑𝑐-𝑥)) |
87 | 62, 64, 65, 67, 71, 71, 75, 85, 86, 86 | dvmptco 25136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ (e↑𝑐-𝑥))) = (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · -1))) |
88 | 87 | mptru 1546 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℝ
D (𝑥 ∈ ℝ ↦
(e↑𝑐-𝑥))) = (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · -1)) |
89 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → -1 ∈
ℝ) |
90 | 89 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → -1 ∈
ℂ) |
91 | 13, 90 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ →
((e↑𝑐-𝑥) · -1) = (-1 ·
(e↑𝑐-𝑥))) |
92 | 13 | mulm1d 11427 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ → (-1
· (e↑𝑐-𝑥)) = -(e↑𝑐-𝑥)) |
93 | 91, 92 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ →
((e↑𝑐-𝑥) · -1) =
-(e↑𝑐-𝑥)) |
94 | 93 | mpteq2ia 5177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · -1)) = (𝑥 ∈ ℝ ↦
-(e↑𝑐-𝑥)) |
95 | 88, 94 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℝ
D (𝑥 ∈ ℝ ↦
(e↑𝑐-𝑥))) = (𝑥 ∈ ℝ ↦
-(e↑𝑐-𝑥)) |
96 | 95 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦
(e↑𝑐-𝑥))) = (𝑥 ∈ ℝ ↦
-(e↑𝑐-𝑥))) |
97 | 17 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑖 ∈ ℕ0) |
98 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → (𝑖 + 1) ∈
ℕ0) |
100 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 + 1) ∈ V |
101 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = (𝑖 + 1) → (𝑗 ∈ ℕ0 ↔ (𝑖 + 1) ∈
ℕ0)) |
102 | 101 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = (𝑖 + 1) → ((𝜑 ∧ 𝑗 ∈ ℕ0) ↔ (𝜑 ∧ (𝑖 + 1) ∈
ℕ0))) |
103 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = (𝑖 + 1) → ((ℝ D𝑛
𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘(𝑖 + 1))) |
104 | 103 | feq1d 6585 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = (𝑖 + 1) → (((ℝ D𝑛
𝐹)‘𝑗):ℝ⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑖 +
1)):ℝ⟶ℂ)) |
105 | 102, 104 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑖 + 1) → (((𝜑 ∧ 𝑗 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑖 +
1)):ℝ⟶ℂ))) |
106 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → (𝑖 ∈ ℕ0 ↔ 𝑗 ∈
ℕ0)) |
107 | 106 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ ℕ0) ↔ (𝜑 ∧ 𝑗 ∈
ℕ0))) |
108 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → ((ℝ D𝑛 𝐹)‘𝑖) = ((ℝ D𝑛 𝐹)‘𝑗)) |
109 | 108 | feq1d 6585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → (((ℝ D𝑛
𝐹)‘𝑖):ℝ⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ)) |
110 | 107, 109 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ))) |
111 | 110, 32 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) |
112 | 100, 105,
111 | vtocl 3498 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑖 +
1)):ℝ⟶ℂ) |
113 | 99, 112 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛
𝐹)‘(𝑖 +
1)):ℝ⟶ℂ) |
114 | 113 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛
𝐹)‘(𝑖 +
1)):ℝ⟶ℂ) |
115 | 114, 35 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ (0...𝑅)) → (((ℝ D𝑛
𝐹)‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
116 | 16, 115 | fsumcl 15445 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
117 | 21, 28, 30, 38 | etransclem39 43814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺:ℝ⟶ℂ) |
118 | 117 | feqmptd 6837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ (𝐺‘𝑥))) |
119 | 118 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐺‘𝑥)) = 𝐺) |
120 | 119 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝐺‘𝑥))) = (ℝ D 𝐺)) |
121 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
122 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0...(𝑅 + 1)) → 𝑖 ∈ ℕ0) |
123 | 122, 32 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ
D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) |
124 | 121, 46, 123, 38 | etransclem2 43777 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) |
125 | 120, 124 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝐺‘𝑥))) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) |
126 | 6, 14, 60, 96, 41, 116, 125 | dvmptmul 25125 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ ℝ ↦
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) · (e↑𝑐-𝑥))))) |
127 | 116, 14 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) · (e↑𝑐-𝑥)) =
((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) |
128 | 127 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) · (e↑𝑐-𝑥))) =
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + ((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))) |
129 | 14 | negcld 11319 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
-(e↑𝑐-𝑥) ∈ ℂ) |
130 | 129, 41 | mulcld 10995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(-(e↑𝑐-𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
131 | 14, 116 | mulcld 10995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) ∈ ℂ) |
132 | 130, 131 | addcomd 11177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + ((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) = (((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + (-(e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
133 | 131, 42 | negsubd 11338 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + -((e↑𝑐-𝑥) · (𝐺‘𝑥))) = (((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) −
((e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
134 | 14, 41 | mulneg1d 11428 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(-(e↑𝑐-𝑥) · (𝐺‘𝑥)) = -((e↑𝑐-𝑥) · (𝐺‘𝑥))) |
135 | 134 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + (-(e↑𝑐-𝑥) · (𝐺‘𝑥))) = (((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + -((e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
136 | 14, 116, 41 | subdid 11431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (𝐺‘𝑥))) = (((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) −
((e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
137 | 133, 135,
136 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + (-(e↑𝑐-𝑥) · (𝐺‘𝑥))) = ((e↑𝑐-𝑥) · (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (𝐺‘𝑥)))) |
138 | 40 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (𝐺‘𝑥)) = (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) |
139 | 16, 115, 36 | fsumsub 15500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Σ𝑖 ∈ (0...𝑅)((((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘𝑖)‘𝑥)) = (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) |
140 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑖 → ((ℝ D𝑛 𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘𝑖)) |
141 | 140 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑖 → (((ℝ D𝑛
𝐹)‘𝑗)‘𝑥) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
142 | 103 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑖 + 1) → (((ℝ D𝑛
𝐹)‘𝑗)‘𝑥) = (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) |
143 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → ((ℝ
D𝑛 𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘0)) |
144 | 143 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → (((ℝ
D𝑛 𝐹)‘𝑗)‘𝑥) = (((ℝ D𝑛 𝐹)‘0)‘𝑥)) |
145 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = (𝑅 + 1) → ((ℝ D𝑛
𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘(𝑅 + 1))) |
146 | 145 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑅 + 1) → (((ℝ
D𝑛 𝐹)‘𝑗)‘𝑥) = (((ℝ D𝑛 𝐹)‘(𝑅 + 1))‘𝑥)) |
147 | | etransclem46.r |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑅 = ((𝑀 · 𝑃) + (𝑃 − 1)) |
148 | 21 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
149 | 28, 148 | nn0mulcld 12298 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 · 𝑃) ∈
ℕ0) |
150 | | nnm1nn0 12274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
151 | 21, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
152 | 149, 151 | nn0addcld 12297 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈
ℕ0) |
153 | 147, 152 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
154 | 153 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑅 ∈
ℕ0) |
155 | 154 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑅 ∈ ℤ) |
156 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 ∈ ℕ0
→ (𝑅 + 1) ∈
ℕ0) |
157 | 153, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑅 + 1) ∈
ℕ0) |
158 | | nn0uz 12620 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 = (ℤ≥‘0) |
159 | 157, 158 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑅 + 1) ∈
(ℤ≥‘0)) |
160 | 159 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑅 + 1) ∈
(ℤ≥‘0)) |
161 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...(𝑅 + 1)) → 𝑗 ∈ ℕ0) |
162 | 161, 111 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) |
163 | 162 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ
D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) |
164 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ (0...(𝑅 + 1))) → 𝑥 ∈ ℝ) |
165 | 163, 164 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ (0...(𝑅 + 1))) → (((ℝ
D𝑛 𝐹)‘𝑗)‘𝑥) ∈ ℂ) |
166 | 141, 142,
144, 146, 155, 160, 165 | telfsum2 15517 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Σ𝑖 ∈ (0...𝑅)((((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘𝑖)‘𝑥)) = ((((ℝ D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥))) |
167 | 138, 139,
166 | 3eqtr2d 2784 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (𝐺‘𝑥)) = ((((ℝ D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥))) |
168 | 167 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) − (𝐺‘𝑥))) = ((e↑𝑐-𝑥) · ((((ℝ
D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥)))) |
169 | 153 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑅 ∈ ℝ) |
170 | 169 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑅 < (𝑅 + 1)) |
171 | 147, 170 | eqbrtrrid 5110 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < (𝑅 + 1)) |
172 | | etransclem5 43780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
173 | 6, 19, 21, 28, 30, 157, 171, 172 | etransclem32 43807 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑅 + 1)) = (𝑥 ∈ ℝ ↦ 0)) |
174 | 173 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) = ((𝑥 ∈ ℝ ↦ 0)‘𝑥)) |
175 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ ↦ 0) =
(𝑥 ∈ ℝ ↦
0) |
176 | 175 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℝ ∧ 0 ∈
ℝ) → ((𝑥 ∈
ℝ ↦ 0)‘𝑥)
= 0) |
177 | 53, 176 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦
0)‘𝑥) =
0) |
178 | 174, 177 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (((ℝ
D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) = 0) |
179 | | cnex 10952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℂ
∈ V |
180 | 179 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ℂ ∈
V) |
181 | | etransclem46.rex |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ℝ ⊆
ℝ) |
182 | 6, 181 | ssexd 5248 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ℝ ∈
V) |
183 | | elpm2r 8633 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:ℝ⟶ℂ ∧ ℝ
⊆ ℝ)) → 𝐹
∈ (ℂ ↑pm ℝ)) |
184 | 180, 182,
46, 181, 183 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
185 | | dvn0 25088 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ)) → ((ℝ
D𝑛 𝐹)‘0) = 𝐹) |
186 | 45, 184, 185 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘0) = 𝐹) |
187 | 186 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘0)‘𝑥) = (𝐹‘𝑥)) |
188 | 187 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (((ℝ
D𝑛 𝐹)‘0)‘𝑥) = (𝐹‘𝑥)) |
189 | 178, 188 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((((ℝ
D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥)) = (0 − (𝐹‘𝑥))) |
190 | | df-neg 11208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -(𝐹‘𝑥) = (0 − (𝐹‘𝑥)) |
191 | 189, 190 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((((ℝ
D𝑛 𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥)) = -(𝐹‘𝑥)) |
192 | 191 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · ((((ℝ D𝑛
𝐹)‘(𝑅 + 1))‘𝑥) − (((ℝ D𝑛
𝐹)‘0)‘𝑥))) =
((e↑𝑐-𝑥) · -(𝐹‘𝑥))) |
193 | 137, 168,
192 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(((e↑𝑐-𝑥) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)) + (-(e↑𝑐-𝑥) · (𝐺‘𝑥))) = ((e↑𝑐-𝑥) · -(𝐹‘𝑥))) |
194 | 128, 132,
193 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) · (e↑𝑐-𝑥))) =
((e↑𝑐-𝑥) · -(𝐹‘𝑥))) |
195 | 194 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
((-(e↑𝑐-𝑥) · (𝐺‘𝑥)) + (Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) · (e↑𝑐-𝑥)))) = (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · -(𝐹‘𝑥)))) |
196 | 14, 47 | mulneg2d 11429 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((e↑𝑐-𝑥) · -(𝐹‘𝑥)) = -((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
197 | 196 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · -(𝐹‘𝑥))) = (𝑥 ∈ ℝ ↦
-((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
198 | 126, 195,
197 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦
((e↑𝑐-𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ ℝ ↦
-((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
199 | 6, 42, 49, 198 | dvmptneg 25130 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ ℝ ↦
--((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
200 | 199 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D (𝑥 ∈ ℝ ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ ℝ ↦
--((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
201 | | 0red 10978 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ) |
202 | | elfzelz 13256 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
203 | 202 | zred 12426 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
204 | 203 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ) |
205 | 201, 204 | iccssred 13166 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (0[,]𝑗) ⊆ ℝ) |
206 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
207 | 206 | tgioo2 23966 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
208 | | 0red 10978 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ) |
209 | | iccntr 23984 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 𝑗
∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]𝑗)) = (0(,)𝑗)) |
210 | 208, 203,
209 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → ((int‘(topGen‘ran
(,)))‘(0[,]𝑗)) =
(0(,)𝑗)) |
211 | 210 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((int‘(topGen‘ran
(,)))‘(0[,]𝑗)) =
(0(,)𝑗)) |
212 | 7, 44, 51, 200, 205, 207, 206, 211 | dvmptres2 25126 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ (0(,)𝑗) ↦
--((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
213 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ) |
214 | | elioore 13109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ) |
215 | 214 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ) |
216 | 215 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ) |
217 | 216 | negcld 11319 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ) |
218 | 213, 217 | cxpcld 25863 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈
ℂ) |
219 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ) |
220 | 214 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ) |
221 | 219, 220 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹‘𝑥) ∈ ℂ) |
222 | 218, 221 | mulcld 10995 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
223 | 222 | negnegd 11323 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) →
--((e↑𝑐-𝑥) · (𝐹‘𝑥)) = ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
224 | 223 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (0(,)𝑗) ↦
--((e↑𝑐-𝑥) · (𝐹‘𝑥))) = (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
225 | 224 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦
--((e↑𝑐-𝑥) · (𝐹‘𝑥))) = (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
226 | 5, 212, 225 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D 𝑂) = (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))) |
227 | 226 | fveq1d 6776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((ℝ D 𝑂)‘𝑥) = ((𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))‘𝑥)) |
228 | 227 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((ℝ D 𝑂)‘𝑥) = ((𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))‘𝑥)) |
229 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗)) |
230 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) = (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
231 | 230 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0(,)𝑗) ∧ ((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) → ((𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))‘𝑥) = ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
232 | 229, 222,
231 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))‘𝑥) = ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
233 | 232 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥)))‘𝑥) = ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
234 | 228, 233 | eqtr2d 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹‘𝑥)) = ((ℝ D 𝑂)‘𝑥)) |
235 | 234 | itgeq2dv 24946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥 = ∫(0(,)𝑗)((ℝ D 𝑂)‘𝑥) d𝑥) |
236 | | elfzle1 13259 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
237 | 236 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ 𝑗) |
238 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) = (𝑥 ∈ (0[,]𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) |
239 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))) |
240 | 86 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) =
(e↑𝑐-𝑥)) |
241 | 208, 203 | iccssred 13166 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → (0[,]𝑗) ⊆ ℝ) |
242 | | ax-resscn 10928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
⊆ ℂ |
243 | 241, 242 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → (0[,]𝑗) ⊆ ℂ) |
244 | 243 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑥 ∈ ℂ) |
245 | 244 | negcld 11319 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → -𝑥 ∈ ℂ) |
246 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → e ∈
ℂ) |
247 | | negcl 11221 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → -𝑥 ∈
ℂ) |
248 | 246, 247 | cxpcld 25863 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ →
(e↑𝑐-𝑥) ∈ ℂ) |
249 | 244, 248 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → (e↑𝑐-𝑥) ∈
ℂ) |
250 | 239, 240,
245, 249 | fvmptd 6882 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → ((𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥)) |
251 | 250 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))‘-𝑥)) |
252 | 251 | adantll 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))‘-𝑥)) |
253 | 252 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (0[,]𝑗) ↦ ((𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))‘-𝑥))) |
254 | | mnfxr 11032 |
. . . . . . . . . . . . . . . . . 18
⊢ -∞
∈ ℝ* |
255 | 254 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (e ∈
ℝ+ → -∞ ∈
ℝ*) |
256 | | 0red 10978 |
. . . . . . . . . . . . . . . . 17
⊢ (e ∈
ℝ+ → 0 ∈ ℝ) |
257 | | rpxr 12739 |
. . . . . . . . . . . . . . . . 17
⊢ (e ∈
ℝ+ → e ∈ ℝ*) |
258 | | rpgt0 12742 |
. . . . . . . . . . . . . . . . 17
⊢ (e ∈
ℝ+ → 0 < e) |
259 | 255, 256,
257, 258 | gtnelioc 43029 |
. . . . . . . . . . . . . . . 16
⊢ (e ∈
ℝ+ → ¬ e ∈ (-∞(,]0)) |
260 | 76, 259 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ¬ e
∈ (-∞(,]0) |
261 | | eldif 3897 |
. . . . . . . . . . . . . . 15
⊢ (e ∈
(ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈
(-∞(,]0))) |
262 | 9, 260, 261 | mpbir2an 708 |
. . . . . . . . . . . . . 14
⊢ e ∈
(ℂ ∖ (-∞(,]0)) |
263 | | cxpcncf2 43440 |
. . . . . . . . . . . . . 14
⊢ (e ∈
(ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ)) |
264 | 262, 263 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦
(e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ)) |
265 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0[,]𝑗) ↦ -𝑥) = (𝑥 ∈ (0[,]𝑗) ↦ -𝑥) |
266 | 265 | negcncf 24085 |
. . . . . . . . . . . . . . 15
⊢
((0[,]𝑗) ⊆
ℂ → (𝑥 ∈
(0[,]𝑗) ↦ -𝑥) ∈ ((0[,]𝑗)–cn→ℂ)) |
267 | 243, 266 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (𝑥 ∈ (0[,]𝑗) ↦ -𝑥) ∈ ((0[,]𝑗)–cn→ℂ)) |
268 | 267 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ -𝑥) ∈ ((0[,]𝑗)–cn→ℂ)) |
269 | 264, 268 | cncfmpt1f 24077 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ ((𝑦 ∈ ℂ ↦
(e↑𝑐𝑦))‘-𝑥)) ∈ ((0[,]𝑗)–cn→ℂ)) |
270 | 253, 269 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (e↑𝑐-𝑥)) ∈ ((0[,]𝑗)–cn→ℂ)) |
271 | 242 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → ℝ ⊆
ℂ) |
272 | 21 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑃 ∈ ℕ) |
273 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑀 ∈
ℕ0) |
274 | | etransclem6 43781 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦 − 𝑘)↑𝑃))) |
275 | 30, 274 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦 − 𝑘)↑𝑃))) |
276 | 241 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑥 ∈ ℝ) |
277 | 276 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑥 ∈ ℝ) |
278 | 271, 272,
273, 275, 277 | etransclem13 43788 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → (𝐹‘𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
279 | 278 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (0[,]𝑗) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
280 | 243 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (0[,]𝑗) ⊆ ℂ) |
281 | | fzfid 13693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (0...𝑀) ∈ Fin) |
282 | 277 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑥 ∈ ℂ) |
283 | 282 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ) |
284 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ) |
285 | 284 | zcnd 12427 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ) |
286 | 285 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ) |
287 | 283, 286 | subcld 11332 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 − 𝑘) ∈ ℂ) |
288 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑃 ∈ ℕ) |
289 | 288, 150 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]𝑗)) → (𝑃 − 1) ∈
ℕ0) |
290 | 148 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]𝑗)) → 𝑃 ∈
ℕ0) |
291 | 289, 290 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]𝑗)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
292 | 291 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
293 | 292 | 3adant1r 1176 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
294 | 287, 293 | expcld 13864 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
295 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑘 ∈ (0...𝑀)) |
296 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → (0[,]𝑗) ⊆ ℂ) |
297 | | ssid 3943 |
. . . . . . . . . . . . . . . . . 18
⊢ ℂ
⊆ ℂ |
298 | 297 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → ℂ ⊆
ℂ) |
299 | 296, 298 | idcncfg 43414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ 𝑥) ∈ ((0[,]𝑗)–cn→ℂ)) |
300 | 285 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ) |
301 | 296, 300,
298 | constcncfg 43413 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ 𝑘) ∈ ((0[,]𝑗)–cn→ℂ)) |
302 | 299, 301 | subcncf 24609 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (𝑥 − 𝑘)) ∈ ((0[,]𝑗)–cn→ℂ)) |
303 | 302 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (𝑥 − 𝑘)) ∈ ((0[,]𝑗)–cn→ℂ)) |
304 | 151, 148 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
305 | | expcncf 24089 |
. . . . . . . . . . . . . . . 16
⊢ (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ)) |
306 | 304, 305 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ)) |
307 | 306 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ)) |
308 | 297 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑘 ∈ (0...𝑀)) → ℂ ⊆
ℂ) |
309 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 − 𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
310 | 295, 303,
307, 308, 309 | cncfcompt2 24071 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((0[,]𝑗)–cn→ℂ)) |
311 | 280, 281,
294, 310 | fprodcncf 43441 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((0[,]𝑗)–cn→ℂ)) |
312 | 279, 311 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (𝐹‘𝑥)) ∈ ((0[,]𝑗)–cn→ℂ)) |
313 | 270, 312 | mulcncf 24610 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) ∈ ((0[,]𝑗)–cn→ℂ)) |
314 | | ioossicc 13165 |
. . . . . . . . . . 11
⊢
(0(,)𝑗) ⊆
(0[,]𝑗) |
315 | 314 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ⊆ (0[,]𝑗)) |
316 | 297 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ℂ ⊆
ℂ) |
317 | 222 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
318 | 238, 313,
315, 316, 317 | cncfmptssg 43412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) ∈ ((0(,)𝑗)–cn→ℂ)) |
319 | 226, 318 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D 𝑂) ∈ ((0(,)𝑗)–cn→ℂ)) |
320 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
321 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
322 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑀 ∈
ℕ0) |
323 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑥 − 𝑗) = (𝑥 − 𝑘)) |
324 | 323 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ((𝑥 − 𝑗)↑𝑃) = ((𝑥 − 𝑘)↑𝑃)) |
325 | 324 | cbvprodv 15626 |
. . . . . . . . . . . . 13
⊢
∏𝑗 ∈
(1...𝑀)((𝑥 − 𝑗)↑𝑃) = ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃) |
326 | 325 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃)) = ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃)) |
327 | 326 | mpteq2i 5179 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) |
328 | 30, 327 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) |
329 | 7, 320, 321, 322, 328, 201, 204 | etransclem18 43793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) ∈
𝐿1) |
330 | 226, 329 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (ℝ D 𝑂) ∈
𝐿1) |
331 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦ (𝐺‘𝑥)) = (𝑥 ∈ ℝ ↦ (𝐺‘𝑥)) |
332 | 6, 19, 21, 28, 30, 38 | etransclem43 43818 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ (ℝ–cn→ℂ)) |
333 | 119, 332 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐺‘𝑥)) ∈ (ℝ–cn→ℂ)) |
334 | 333 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ ℝ ↦ (𝐺‘𝑥)) ∈ (ℝ–cn→ℂ)) |
335 | 117 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → 𝐺:ℝ⟶ℂ) |
336 | 335, 277 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0[,]𝑗)) → (𝐺‘𝑥) ∈ ℂ) |
337 | 331, 334,
205, 316, 336 | cncfmptssg 43412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ (𝐺‘𝑥)) ∈ ((0[,]𝑗)–cn→ℂ)) |
338 | 270, 337 | mulcncf 24610 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦ ((e↑𝑐-𝑥) · (𝐺‘𝑥))) ∈ ((0[,]𝑗)–cn→ℂ)) |
339 | 338 | negcncfg 43422 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥))) ∈ ((0[,]𝑗)–cn→ℂ)) |
340 | 3, 339 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑂 ∈ ((0[,]𝑗)–cn→ℂ)) |
341 | 201, 204,
237, 319, 330, 340 | ftc2 25208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((ℝ D 𝑂)‘𝑥) d𝑥 = ((𝑂‘𝑗) − (𝑂‘0))) |
342 | | negeq 11213 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑗 → -𝑥 = -𝑗) |
343 | 342 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (e↑𝑐-𝑥) =
(e↑𝑐-𝑗)) |
344 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (𝐺‘𝑥) = (𝐺‘𝑗)) |
345 | 343, 344 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → ((e↑𝑐-𝑥) · (𝐺‘𝑥)) = ((e↑𝑐-𝑗) · (𝐺‘𝑗))) |
346 | 345 | negeqd 11215 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑗 → -((e↑𝑐-𝑥) · (𝐺‘𝑥)) = -((e↑𝑐-𝑗) · (𝐺‘𝑗))) |
347 | 201 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈
ℝ*) |
348 | 204 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ*) |
349 | | ubicc2 13197 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 0 ≤
𝑗) → 𝑗 ∈ (0[,]𝑗)) |
350 | 347, 348,
237, 349 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0[,]𝑗)) |
351 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → e ∈ ℂ) |
352 | 203 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
353 | 352 | negcld 11319 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → -𝑗 ∈ ℂ) |
354 | 351, 353 | cxpcld 25863 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑐-𝑗) ∈
ℂ) |
355 | 354 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (e↑𝑐-𝑗) ∈
ℂ) |
356 | 117 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝐺:ℝ⟶ℂ) |
357 | 356, 204 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐺‘𝑗) ∈ ℂ) |
358 | 355, 357 | mulcld 10995 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
((e↑𝑐-𝑗) · (𝐺‘𝑗)) ∈ ℂ) |
359 | 358 | negcld 11319 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
-((e↑𝑐-𝑗) · (𝐺‘𝑗)) ∈ ℂ) |
360 | 3, 346, 350, 359 | fvmptd3 6898 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑂‘𝑗) = -((e↑𝑐-𝑗) · (𝐺‘𝑗))) |
361 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑂 = (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · (𝐺‘𝑥)))) |
362 | | negeq 11213 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → -𝑥 = -0) |
363 | 362 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0 →
(e↑𝑐-𝑥) =
(e↑𝑐-0)) |
364 | | neg0 11267 |
. . . . . . . . . . . . . . . . 17
⊢ -0 =
0 |
365 | 364 | oveq2i 7286 |
. . . . . . . . . . . . . . . 16
⊢
(e↑𝑐-0) =
(e↑𝑐0) |
366 | | cxp0 25825 |
. . . . . . . . . . . . . . . . 17
⊢ (e ∈
ℂ → (e↑𝑐0) = 1) |
367 | 9, 366 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(e↑𝑐0) = 1 |
368 | 365, 367 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢
(e↑𝑐-0) = 1 |
369 | 363, 368 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 →
(e↑𝑐-𝑥) = 1) |
370 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → (𝐺‘𝑥) = (𝐺‘0)) |
371 | 369, 370 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 →
((e↑𝑐-𝑥) · (𝐺‘𝑥)) = (1 · (𝐺‘0))) |
372 | | 0red 10978 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℝ) |
373 | 117, 372 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘0) ∈ ℂ) |
374 | 373 | mulid2d 10993 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 · (𝐺‘0)) = (𝐺‘0)) |
375 | 371, 374 | sylan9eqr 2800 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 0) →
((e↑𝑐-𝑥) · (𝐺‘𝑥)) = (𝐺‘0)) |
376 | 375 | negeqd 11215 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 0) →
-((e↑𝑐-𝑥) · (𝐺‘𝑥)) = -(𝐺‘0)) |
377 | 376 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 = 0) →
-((e↑𝑐-𝑥) · (𝐺‘𝑥)) = -(𝐺‘0)) |
378 | | lbicc2 13196 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 0 ≤
𝑗) → 0 ∈
(0[,]𝑗)) |
379 | 347, 348,
237, 378 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ (0[,]𝑗)) |
380 | 373 | negcld 11319 |
. . . . . . . . . . 11
⊢ (𝜑 → -(𝐺‘0) ∈ ℂ) |
381 | 380 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → -(𝐺‘0) ∈ ℂ) |
382 | 361, 377,
379, 381 | fvmptd 6882 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑂‘0) = -(𝐺‘0)) |
383 | 360, 382 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑂‘𝑗) − (𝑂‘0)) =
(-((e↑𝑐-𝑗) · (𝐺‘𝑗)) − -(𝐺‘0))) |
384 | 373 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐺‘0) ∈ ℂ) |
385 | 359, 384 | subnegd 11339 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
(-((e↑𝑐-𝑗) · (𝐺‘𝑗)) − -(𝐺‘0)) =
(-((e↑𝑐-𝑗) · (𝐺‘𝑗)) + (𝐺‘0))) |
386 | 359, 384 | addcomd 11177 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
(-((e↑𝑐-𝑗) · (𝐺‘𝑗)) + (𝐺‘0)) = ((𝐺‘0) +
-((e↑𝑐-𝑗) · (𝐺‘𝑗)))) |
387 | 384, 358 | negsubd 11338 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐺‘0) +
-((e↑𝑐-𝑗) · (𝐺‘𝑗))) = ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) |
388 | 386, 387 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
(-((e↑𝑐-𝑗) · (𝐺‘𝑗)) + (𝐺‘0)) = ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) |
389 | 383, 385,
388 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑂‘𝑗) − (𝑂‘0)) = ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) |
390 | 235, 341,
389 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥 = ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) |
391 | 390 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) = (((𝐴‘𝑗) · (e↑𝑐𝑗)) · ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗))))) |
392 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑄 ∈
(Poly‘ℤ)) |
393 | | 0zd 12331 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ ℤ) |
394 | | etransclem46.a |
. . . . . . . . . . 11
⊢ 𝐴 = (coeff‘𝑄) |
395 | 394 | coef2 25392 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ) |
396 | 392, 393,
395 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ) |
397 | | elfznn0 13349 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
398 | 397 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0) |
399 | 396, 398 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐴‘𝑗) ∈ ℤ) |
400 | 399 | zcnd 12427 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐴‘𝑗) ∈ ℂ) |
401 | 351, 352 | cxpcld 25863 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑐𝑗) ∈
ℂ) |
402 | 401 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈
ℂ) |
403 | 400, 402 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐴‘𝑗) · (e↑𝑐𝑗)) ∈
ℂ) |
404 | 403, 384,
358 | subdid 11431 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) · ((𝐺‘0) −
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) = ((((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))))) |
405 | 391, 404 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) = ((((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))))) |
406 | 405 | sumeq2dv 15415 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)((((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))))) |
407 | | fzfid 13693 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
408 | 403, 384 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) ∈ ℂ) |
409 | 403, 358 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))) ∈ ℂ) |
410 | 407, 408,
409 | fsumsub 15500 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)((((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))))) |
411 | | etransclem46.qe0 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘e) = 0) |
412 | 411 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → 0 = (𝑄‘e)) |
413 | 394, 23 | coeid2 25400 |
. . . . . . . . 9
⊢ ((𝑄 ∈ (Poly‘ℤ)
∧ e ∈ ℂ) → (𝑄‘e) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑗))) |
414 | 25, 9, 413 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘e) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑗))) |
415 | | cxpexp 25823 |
. . . . . . . . . . . . 13
⊢ ((e
∈ ℂ ∧ 𝑗
∈ ℕ0) → (e↑𝑐𝑗) = (e↑𝑗)) |
416 | 351, 397,
415 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑐𝑗) = (e↑𝑗)) |
417 | 416 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑗) = (e↑𝑐𝑗)) |
418 | 417 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑀) → ((𝐴‘𝑗) · (e↑𝑗)) = ((𝐴‘𝑗) · (e↑𝑐𝑗))) |
419 | 418 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐴‘𝑗) · (e↑𝑗)) = ((𝐴‘𝑗) · (e↑𝑐𝑗))) |
420 | 419 | sumeq2dv 15415 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑗)) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑐𝑗))) |
421 | 412, 414,
420 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝜑 → 0 = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑐𝑗))) |
422 | 421 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → (0 · (𝐺‘0)) = (Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0))) |
423 | 373 | mul02d 11173 |
. . . . . 6
⊢ (𝜑 → (0 · (𝐺‘0)) = 0) |
424 | 407, 373,
403 | fsummulc1 15497 |
. . . . . 6
⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0))) |
425 | 422, 423,
424 | 3eqtr3rd 2787 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) = 0) |
426 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑥) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) |
427 | 426 | sumeq2sdv 15416 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) |
428 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (0...𝑅) ∈ Fin) |
429 | 33 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛
𝐹)‘𝑖):ℝ⟶ℂ) |
430 | 204 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 ∈ (0...𝑅)) → 𝑗 ∈ ℝ) |
431 | 429, 430 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 ∈ (0...𝑅)) → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗) ∈ ℂ) |
432 | 428, 431 | fsumcl 15445 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗) ∈ ℂ) |
433 | 38, 427, 204, 432 | fvmptd3 6898 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐺‘𝑗) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) |
434 | 433 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
((e↑𝑐-𝑗) · (𝐺‘𝑗)) = ((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) |
435 | 434 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))) = (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)))) |
436 | 355, 432 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) ∈ ℂ) |
437 | 400, 402,
436 | mulassd 10998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) = ((𝐴‘𝑗) · ((e↑𝑐𝑗) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))))) |
438 | 367 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ 1 =
(e↑𝑐0) |
439 | 438 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → 1 =
(e↑𝑐0)) |
440 | 352 | negidd 11322 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + -𝑗) = 0) |
441 | 440 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 0 = (𝑗 + -𝑗)) |
442 | 441 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑐0) =
(e↑𝑐(𝑗 + -𝑗))) |
443 | 53, 54 | gtneii 11087 |
. . . . . . . . . . . . . . . 16
⊢ e ≠
0 |
444 | 443 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → e ≠ 0) |
445 | 351, 444,
352, 353 | cxpaddd 25872 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (e↑𝑐(𝑗 + -𝑗)) = ((e↑𝑐𝑗) ·
(e↑𝑐-𝑗))) |
446 | 439, 442,
445 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 1 =
((e↑𝑐𝑗) · (e↑𝑐-𝑗))) |
447 | 446 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (1 · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) = (((e↑𝑐𝑗) ·
(e↑𝑐-𝑗)) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) |
448 | 447 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1 · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) = (((e↑𝑐𝑗) ·
(e↑𝑐-𝑗)) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) |
449 | 432 | mulid2d 10993 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (1 · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) |
450 | 402, 355,
432 | mulassd 10998 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) →
(((e↑𝑐𝑗) · (e↑𝑐-𝑗)) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) = ((e↑𝑐𝑗) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)))) |
451 | 448, 449,
450 | 3eqtr3rd 2787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((e↑𝑐𝑗) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) = Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) |
452 | 451 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐴‘𝑗) · ((e↑𝑐𝑗) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)))) = ((𝐴‘𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗))) |
453 | 428, 400,
431 | fsummulc2 15496 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐴‘𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)) = Σ𝑖 ∈ (0...𝑅)((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗))) |
454 | 452, 453 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝐴‘𝑗) · ((e↑𝑐𝑗) ·
((e↑𝑐-𝑗) · Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑗)))) = Σ𝑖 ∈ (0...𝑅)((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗))) |
455 | 435, 437,
454 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))) = Σ𝑖 ∈ (0...𝑅)((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗))) |
456 | 455 | sumeq2dv 15415 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))) = Σ𝑗 ∈ (0...𝑀)Σ𝑖 ∈ (0...𝑅)((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗))) |
457 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑗 ∈ V |
458 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑖 ∈ V |
459 | 457, 458 | op1std 7841 |
. . . . . . . . 9
⊢ (𝑘 = 〈𝑗, 𝑖〉 → (1st ‘𝑘) = 𝑗) |
460 | 459 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑘 = 〈𝑗, 𝑖〉 → (𝐴‘(1st ‘𝑘)) = (𝐴‘𝑗)) |
461 | 457, 458 | op2ndd 7842 |
. . . . . . . . . 10
⊢ (𝑘 = 〈𝑗, 𝑖〉 → (2nd ‘𝑘) = 𝑖) |
462 | 461 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑘 = 〈𝑗, 𝑖〉 → ((ℝ D𝑛
𝐹)‘(2nd
‘𝑘)) = ((ℝ
D𝑛 𝐹)‘𝑖)) |
463 | 462, 459 | fveq12d 6781 |
. . . . . . . 8
⊢ (𝑘 = 〈𝑗, 𝑖〉 → (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) = (((ℝ
D𝑛 𝐹)‘𝑖)‘𝑗)) |
464 | 460, 463 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 〈𝑗, 𝑖〉 → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) = ((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗))) |
465 | | fzfid 13693 |
. . . . . . 7
⊢ (𝜑 → (0...𝑅) ∈ Fin) |
466 | 400 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑅))) → (𝐴‘𝑗) ∈ ℂ) |
467 | 431 | anasss 467 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑅))) → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗) ∈ ℂ) |
468 | 466, 467 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑅))) → ((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗)) ∈ ℂ) |
469 | 464, 407,
465, 468 | fsumxp 15484 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)Σ𝑖 ∈ (0...𝑅)((𝐴‘𝑗) · (((ℝ D𝑛
𝐹)‘𝑖)‘𝑗)) = Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
470 | 456, 469 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗))) = Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
471 | 425, 470 | oveq12d 7293 |
. . . 4
⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) = (0 − Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))))) |
472 | | df-neg 11208 |
. . . . . 6
⊢
-Σ𝑘 ∈
((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) = (0 −
Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
473 | 472 | eqcomi 2747 |
. . . . 5
⊢ (0
− Σ𝑘 ∈
((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) =
-Σ𝑘 ∈
((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) |
474 | 473 | a1i 11 |
. . . 4
⊢ (𝜑 → (0 − Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) =
-Σ𝑘 ∈
((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
475 | 410, 471,
474 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)((((𝐴‘𝑗) · (e↑𝑐𝑗)) · (𝐺‘0)) − (((𝐴‘𝑗) · (e↑𝑐𝑗)) ·
((e↑𝑐-𝑗) · (𝐺‘𝑗)))) = -Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
476 | 2, 406, 475 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → 𝐿 = -Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) |
477 | 476 | oveq1d 7290 |
1
⊢ (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |