Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem34 Structured version   Visualization version   GIF version

Theorem etransclem34 42910
Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem34.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem34.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem34.p (𝜑𝑃 ∈ ℕ)
etransclem34.m (𝜑𝑀 ∈ ℕ0)
etransclem34.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
etransclem34.n (𝜑𝑁 ∈ ℕ0)
etransclem34.h 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
etransclem34.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
Assertion
Ref Expression
etransclem34 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝐶,𝑐,𝑘,𝑥   𝐹,𝑐   𝐻,𝑐,𝑘,𝑛,𝑥   𝑀,𝑐,𝑘,𝑥,𝑛   𝑁,𝑐,𝑘,𝑥,𝑛   𝑃,𝑘,𝑥   𝑆,𝑐,𝑘,𝑛,𝑥   𝑋,𝑐,𝑘,𝑥,𝑛   𝜑,𝑐,𝑘,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑘,𝑛)

Proof of Theorem etransclem34
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem34.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem34.a . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem34.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem34.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem34.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
6 etransclem34.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem34.h . . 3 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
8 etransclem34.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 42906 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))))
101, 2dvdmsscn 42578 . . 3 (𝜑𝑋 ⊆ ℂ)
118, 6etransclem16 42892 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
1210adantr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑋 ⊆ ℂ)
136faccld 13640 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1413nncnd 11641 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1514adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
16 fzfid 13336 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
17 fzssnn0 41949 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
18 ssrab2 4007 . . . . . . . . . . . . 13 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))
19 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
208, 6etransclem12 42888 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2120adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2219, 21eleqtrd 2892 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2318, 22sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
24 elmapi 8411 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2625ffvelrnda 6828 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2717, 26sseldi 3913 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℕ0)
2827faccld 13640 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℕ)
2928nncnd 11641 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℂ)
3016, 29fprodcl 15298 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ∈ ℂ)
3128nnne0d 11675 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ≠ 0)
3216, 29, 31fprodn0 15325 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ≠ 0)
3315, 30, 32divcld 11405 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) ∈ ℂ)
34 ssid 3937 . . . . . 6 ℂ ⊆ ℂ
3534a1i 11 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ℂ ⊆ ℂ)
3612, 33, 35constcncfg 42514 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))) ∈ (𝑋cn→ℂ))
371ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
382ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
393ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
40 etransclem5 42881 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
417, 40eqtri 2821 . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
42 simpr 488 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀))
4337, 38, 39, 41, 42, 27etransclem20 42896 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
44433adant2 1128 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
45 simp2 1134 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → 𝑥𝑋)
4644, 45ffvelrnd 6829 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) ∈ ℂ)
4743feqmptd 6708 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)))
4837, 38, 39, 41, 42, 27etransclem22 42898 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) ∈ (𝑋cn→ℂ))
4947, 48eqeltrrd 2891 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5012, 16, 46, 49fprodcncf 42542 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5136, 50mulcncf 24050 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
5210, 11, 51fsumcncf 42520 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
539, 52eqeltrd 2890 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  wss 3881  ifcif 4425  {cpr 4527  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  ...cfz 12885  cexp 13425  !cfa 13629  Σcsu 15034  cprod 15251  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  cnccncf 23481   D𝑛 cdvn 24467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-dvn 24471
This theorem is referenced by:  etransclem40  42916
  Copyright terms: Public domain W3C validator