| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem34 | Structured version Visualization version GIF version | ||
| Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem34.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| etransclem34.a | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| etransclem34.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem34.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| etransclem34.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) |
| etransclem34.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| etransclem34.h | ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| etransclem34.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) |
| Ref | Expression |
|---|---|
| etransclem34 | ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem34.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | etransclem34.a | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | etransclem34.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | etransclem34.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 5 | etransclem34.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) | |
| 6 | etransclem34.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | etransclem34.h | . . 3 ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | |
| 8 | etransclem34.c | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 46269 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)))) |
| 10 | 1, 2 | dvdmsscn 45941 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 11 | 8, 6 | etransclem16 46255 | . . 3 ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
| 12 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑋 ⊆ ℂ) |
| 13 | 6 | faccld 14256 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
| 14 | 13 | nncnd 12209 | . . . . . . 7 ⊢ (𝜑 → (!‘𝑁) ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) ∈ ℂ) |
| 16 | fzfid 13945 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) | |
| 17 | fzssnn0 45321 | . . . . . . . . . 10 ⊢ (0...𝑁) ⊆ ℕ0 | |
| 18 | ssrab2 4046 | . . . . . . . . . . . . 13 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) | |
| 19 | simpr 484 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) | |
| 20 | 8, 6 | etransclem12 46251 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 22 | 19, 21 | eleqtrd 2831 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 23 | 18, 22 | sselid 3947 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
| 24 | elmapi 8825 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) | |
| 25 | 23, 24 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 26 | 25 | ffvelcdmda 7059 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ (0...𝑁)) |
| 27 | 17, 26 | sselid 3947 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℕ0) |
| 28 | 27 | faccld 14256 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℕ) |
| 29 | 28 | nncnd 12209 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℂ) |
| 30 | 16, 29 | fprodcl 15925 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ∈ ℂ) |
| 31 | 28 | nnne0d 12243 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ≠ 0) |
| 32 | 16, 29, 31 | fprodn0 15952 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ≠ 0) |
| 33 | 15, 30, 32 | divcld 11965 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) ∈ ℂ) |
| 34 | ssid 3972 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ℂ ⊆ ℂ) |
| 36 | 12, 33, 35 | constcncfg 45877 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)))) ∈ (𝑋–cn→ℂ)) |
| 37 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
| 38 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 39 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
| 40 | etransclem5 46244 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
| 41 | 7, 40 | eqtri 2753 | . . . . . . . 8 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 42 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀)) | |
| 43 | 37, 38, 39, 41, 42, 27 | etransclem20 46259 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 44 | 43 | 3adant2 1131 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 45 | simp2 1137 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ 𝑋) | |
| 46 | 44, 45 | ffvelcdmd 7060 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥) ∈ ℂ) |
| 47 | 43 | feqmptd 6932 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) |
| 48 | 37, 38, 39, 41, 42, 27 | etransclem22 46261 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) ∈ (𝑋–cn→ℂ)) |
| 49 | 47, 48 | eqeltrrd 2830 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 50 | 12, 16, 46, 49 | fprodcncf 45905 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 51 | 36, 50 | mulcncf 25353 | . . 3 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 52 | 10, 11, 51 | fsumcncf 45883 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 53 | 9, 52 | eqeltrd 2829 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ifcif 4491 {cpr 4594 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 − cmin 11412 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 ↑cexp 14033 !cfa 14245 Σcsu 15659 ∏cprod 15876 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 –cn→ccncf 24776 D𝑛 cdvn 25772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-prod 15877 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-dvn 25776 |
| This theorem is referenced by: etransclem40 46279 |
| Copyright terms: Public domain | W3C validator |