| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem34 | Structured version Visualization version GIF version | ||
| Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem34.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| etransclem34.a | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| etransclem34.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem34.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| etransclem34.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) |
| etransclem34.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| etransclem34.h | ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| etransclem34.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) |
| Ref | Expression |
|---|---|
| etransclem34 | ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem34.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | etransclem34.a | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | etransclem34.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | etransclem34.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 5 | etransclem34.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) | |
| 6 | etransclem34.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | etransclem34.h | . . 3 ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | |
| 8 | etransclem34.c | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 46249 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)))) |
| 10 | 1, 2 | dvdmsscn 45921 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 11 | 8, 6 | etransclem16 46235 | . . 3 ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
| 12 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑋 ⊆ ℂ) |
| 13 | 6 | faccld 14191 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
| 14 | 13 | nncnd 12144 | . . . . . . 7 ⊢ (𝜑 → (!‘𝑁) ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) ∈ ℂ) |
| 16 | fzfid 13880 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) | |
| 17 | fzssnn0 45302 | . . . . . . . . . 10 ⊢ (0...𝑁) ⊆ ℕ0 | |
| 18 | ssrab2 4031 | . . . . . . . . . . . . 13 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) | |
| 19 | simpr 484 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) | |
| 20 | 8, 6 | etransclem12 46231 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 22 | 19, 21 | eleqtrd 2830 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 23 | 18, 22 | sselid 3933 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
| 24 | elmapi 8776 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) | |
| 25 | 23, 24 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 26 | 25 | ffvelcdmda 7018 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ (0...𝑁)) |
| 27 | 17, 26 | sselid 3933 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℕ0) |
| 28 | 27 | faccld 14191 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℕ) |
| 29 | 28 | nncnd 12144 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℂ) |
| 30 | 16, 29 | fprodcl 15859 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ∈ ℂ) |
| 31 | 28 | nnne0d 12178 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ≠ 0) |
| 32 | 16, 29, 31 | fprodn0 15886 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ≠ 0) |
| 33 | 15, 30, 32 | divcld 11900 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) ∈ ℂ) |
| 34 | ssid 3958 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ℂ ⊆ ℂ) |
| 36 | 12, 33, 35 | constcncfg 45857 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)))) ∈ (𝑋–cn→ℂ)) |
| 37 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
| 38 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 39 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
| 40 | etransclem5 46224 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
| 41 | 7, 40 | eqtri 2752 | . . . . . . . 8 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 42 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀)) | |
| 43 | 37, 38, 39, 41, 42, 27 | etransclem20 46239 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 44 | 43 | 3adant2 1131 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 45 | simp2 1137 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ 𝑋) | |
| 46 | 44, 45 | ffvelcdmd 7019 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥) ∈ ℂ) |
| 47 | 43 | feqmptd 6891 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) |
| 48 | 37, 38, 39, 41, 42, 27 | etransclem22 46241 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) ∈ (𝑋–cn→ℂ)) |
| 49 | 47, 48 | eqeltrrd 2829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 50 | 12, 16, 46, 49 | fprodcncf 45885 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 51 | 36, 50 | mulcncf 25344 | . . 3 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 52 | 10, 11, 51 | fsumcncf 45863 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 53 | 9, 52 | eqeltrd 2828 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 ifcif 4476 {cpr 4579 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 · cmul 11014 − cmin 11347 / cdiv 11777 ℕcn 12128 ℕ0cn0 12384 ...cfz 13410 ↑cexp 13968 !cfa 14180 Σcsu 15593 ∏cprod 15810 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21261 –cn→ccncf 24767 D𝑛 cdvn 25763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-prod 15811 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-dvn 25767 |
| This theorem is referenced by: etransclem40 46259 |
| Copyright terms: Public domain | W3C validator |