| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem34 | Structured version Visualization version GIF version | ||
| Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem34.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| etransclem34.a | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| etransclem34.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem34.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| etransclem34.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) |
| etransclem34.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| etransclem34.h | ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| etransclem34.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) |
| Ref | Expression |
|---|---|
| etransclem34 | ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem34.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | etransclem34.a | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 3 | etransclem34.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 4 | etransclem34.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 5 | etransclem34.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) | |
| 6 | etransclem34.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | etransclem34.h | . . 3 ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | |
| 8 | etransclem34.c | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 46260 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)))) |
| 10 | 1, 2 | dvdmsscn 45932 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 11 | 8, 6 | etransclem16 46246 | . . 3 ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
| 12 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑋 ⊆ ℂ) |
| 13 | 6 | faccld 14307 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
| 14 | 13 | nncnd 12261 | . . . . . . 7 ⊢ (𝜑 → (!‘𝑁) ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) ∈ ℂ) |
| 16 | fzfid 13996 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) | |
| 17 | fzssnn0 45312 | . . . . . . . . . 10 ⊢ (0...𝑁) ⊆ ℕ0 | |
| 18 | ssrab2 4060 | . . . . . . . . . . . . 13 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) | |
| 19 | simpr 484 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) | |
| 20 | 8, 6 | etransclem12 46242 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 22 | 19, 21 | eleqtrd 2837 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑁}) |
| 23 | 18, 22 | sselid 3961 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
| 24 | elmapi 8868 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) | |
| 25 | 23, 24 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 26 | 25 | ffvelcdmda 7079 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ (0...𝑁)) |
| 27 | 17, 26 | sselid 3961 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℕ0) |
| 28 | 27 | faccld 14307 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℕ) |
| 29 | 28 | nncnd 12261 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ∈ ℂ) |
| 30 | 16, 29 | fprodcl 15973 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ∈ ℂ) |
| 31 | 28 | nnne0d 12295 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐‘𝑘)) ≠ 0) |
| 32 | 16, 29, 31 | fprodn0 16000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) ≠ 0) |
| 33 | 15, 30, 32 | divcld 12022 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) ∈ ℂ) |
| 34 | ssid 3986 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ℂ ⊆ ℂ) |
| 36 | 12, 33, 35 | constcncfg 45868 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)))) ∈ (𝑋–cn→ℂ)) |
| 37 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
| 38 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 39 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
| 40 | etransclem5 46235 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
| 41 | 7, 40 | eqtri 2759 | . . . . . . . 8 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 42 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀)) | |
| 43 | 37, 38, 39, 41, 42, 27 | etransclem20 46250 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 44 | 43 | 3adant2 1131 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)):𝑋⟶ℂ) |
| 45 | simp2 1137 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ 𝑋) | |
| 46 | 44, 45 | ffvelcdmd 7080 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥) ∈ ℂ) |
| 47 | 43 | feqmptd 6952 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) |
| 48 | 37, 38, 39, 41, 42, 27 | etransclem22 46252 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘)) ∈ (𝑋–cn→ℂ)) |
| 49 | 47, 48 | eqeltrrd 2836 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 50 | 12, 16, 46, 49 | fprodcncf 45896 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 51 | 36, 50 | mulcncf 25403 | . . 3 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝑥 ∈ 𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 52 | 10, 11, 51 | fsumcncf 45874 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑘))‘(𝑐‘𝑘))‘𝑥))) ∈ (𝑋–cn→ℂ)) |
| 53 | 9, 52 | eqeltrd 2835 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 ifcif 4505 {cpr 4608 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 − cmin 11471 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 ↑cexp 14084 !cfa 14296 Σcsu 15707 ∏cprod 15924 ↾t crest 17439 TopOpenctopn 17440 ℂfldccnfld 21320 –cn→ccncf 24825 D𝑛 cdvn 25822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-prod 15925 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-dvn 25826 |
| This theorem is referenced by: etransclem40 46270 |
| Copyright terms: Public domain | W3C validator |