Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem34 Structured version   Visualization version   GIF version

Theorem etransclem34 42840
Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem34.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem34.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem34.p (𝜑𝑃 ∈ ℕ)
etransclem34.m (𝜑𝑀 ∈ ℕ0)
etransclem34.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
etransclem34.n (𝜑𝑁 ∈ ℕ0)
etransclem34.h 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
etransclem34.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
Assertion
Ref Expression
etransclem34 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝐶,𝑐,𝑘,𝑥   𝐹,𝑐   𝐻,𝑐,𝑘,𝑛,𝑥   𝑀,𝑐,𝑘,𝑥,𝑛   𝑁,𝑐,𝑘,𝑥,𝑛   𝑃,𝑘,𝑥   𝑆,𝑐,𝑘,𝑛,𝑥   𝑋,𝑐,𝑘,𝑥,𝑛   𝜑,𝑐,𝑘,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑘,𝑛)

Proof of Theorem etransclem34
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem34.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem34.a . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem34.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem34.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem34.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
6 etransclem34.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem34.h . . 3 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
8 etransclem34.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 42836 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))))
101, 2dvdmsscn 42508 . . 3 (𝜑𝑋 ⊆ ℂ)
118, 6etransclem16 42822 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
1210adantr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑋 ⊆ ℂ)
136faccld 13649 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1413nncnd 11650 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1514adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
16 fzfid 13345 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
17 fzssnn0 41879 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
18 ssrab2 4042 . . . . . . . . . . . . 13 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))
19 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
208, 6etransclem12 42818 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2120adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2219, 21eleqtrd 2918 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2318, 22sseldi 3951 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
24 elmapi 8424 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2625ffvelrnda 6842 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2717, 26sseldi 3951 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℕ0)
2827faccld 13649 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℕ)
2928nncnd 11650 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℂ)
3016, 29fprodcl 15306 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ∈ ℂ)
3128nnne0d 11684 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ≠ 0)
3216, 29, 31fprodn0 15333 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ≠ 0)
3315, 30, 32divcld 11414 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) ∈ ℂ)
34 ssid 3975 . . . . . 6 ℂ ⊆ ℂ
3534a1i 11 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ℂ ⊆ ℂ)
3612, 33, 35constcncfg 42444 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))) ∈ (𝑋cn→ℂ))
371ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
382ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
393ad2antrr 725 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
40 etransclem5 42811 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
417, 40eqtri 2847 . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
42 simpr 488 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀))
4337, 38, 39, 41, 42, 27etransclem20 42826 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
44433adant2 1128 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
45 simp2 1134 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → 𝑥𝑋)
4644, 45ffvelrnd 6843 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) ∈ ℂ)
4743feqmptd 6724 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)))
4837, 38, 39, 41, 42, 27etransclem22 42828 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) ∈ (𝑋cn→ℂ))
4947, 48eqeltrrd 2917 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5012, 16, 46, 49fprodcncf 42472 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5136, 50mulcncf 24056 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
5210, 11, 51fsumcncf 42450 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
539, 52eqeltrd 2916 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3137  wss 3919  ifcif 4450  {cpr 4552  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  m cmap 8402  cc 10533  cr 10534  0cc0 10535  1c1 10536   · cmul 10540  cmin 10868   / cdiv 11295  cn 11634  0cn0 11894  ...cfz 12894  cexp 13434  !cfa 13638  Σcsu 15042  cprod 15259  t crest 16694  TopOpenctopn 16695  fldccnfld 20098  cnccncf 23487   D𝑛 cdvn 24473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-fbas 20095  df-fg 20096  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24475  df-dv 24476  df-dvn 24477
This theorem is referenced by:  etransclem40  42846
  Copyright terms: Public domain W3C validator