Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem44 Structured version   Visualization version   GIF version

Theorem etransclem44 41013
Description: The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem44.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem44.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem44.m (𝜑𝑀 ∈ ℕ0)
etransclem44.p (𝜑𝑃 ∈ ℙ)
etransclem44.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem44.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem44.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem44.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem44 (𝜑𝐾 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem44
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem44.k . . . 4 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
21a1i 11 . . 3 (𝜑𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
3 nfv 1995 . . . . 5 𝑘𝜑
4 nfcv 2913 . . . . 5 𝑘((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
5 fzfi 12980 . . . . . . 7 (0...𝑀) ∈ Fin
6 fzfi 12980 . . . . . . 7 (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin
7 xpfi 8388 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
85, 6, 7mp2an 666 . . . . . 6 ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin
98a1i 11 . . . . 5 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
10 etransclem44.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℤ)
1110adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
12 fzssnn0 40050 . . . . . . . . . 10 (0...𝑀) ⊆ ℕ0
13 xp1st 7348 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
1412, 13sseldi 3751 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
1514adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
1611, 15ffvelrnd 6504 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
17 reelprrecn 10231 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
1817a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
19 reopn 40020 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
20 eqid 2771 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 22827 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2219, 21eleqtri 2848 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2322a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
24 etransclem44.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
25 prmnn 15596 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
28 etransclem44.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
30 etransclem44.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 7349 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
32 elfznn0 12641 . . . . . . . . . 10 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
3433adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
3515nn0red 11555 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
3615nn0zd 11683 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℤ)
3718, 23, 27, 29, 30, 34, 35, 36etransclem42 41011 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
3816, 37zmulcld 11691 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
3938zcnd 11686 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
40 nn0uz 11925 . . . . . . . 8 0 = (ℤ‘0)
4128, 40syl6eleq 2860 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
42 eluzfz1 12556 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4341, 42syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
44 0zd 11592 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4528nn0zd 11683 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
4626nnzd 11684 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
4745, 46zmulcld 11691 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
48 nnm1nn0 11537 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4926, 48syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
5049nn0zd 11683 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℤ)
5147, 50zaddcld 11689 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ)
5244, 51, 503jca 1122 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ))
5349nn0ge0d 11557 . . . . . . . 8 (𝜑 → 0 ≤ (𝑃 − 1))
5426nnnn0d 11554 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ0)
5528, 54nn0mulcld 11559 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
5655nn0ge0d 11557 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑀 · 𝑃))
5749nn0red 11555 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
5847zred 11685 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℝ)
5957, 58addge02d 10819 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑀 · 𝑃) ↔ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
6056, 59mpbid 222 . . . . . . . 8 (𝜑 → (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
6152, 53, 60jca32 501 . . . . . . 7 (𝜑 → ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
62 elfz2 12541 . . . . . . 7 ((𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ↔ ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
6361, 62sylibr 224 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
64 opelxp 5287 . . . . . 6 (⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ↔ (0 ∈ (0...𝑀) ∧ (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
6543, 63, 64sylanbrc 566 . . . . 5 (𝜑 → ⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
66 fveq2 6333 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = (1st ‘⟨0, (𝑃 − 1)⟩))
67 0re 10243 . . . . . . . . 9 0 ∈ ℝ
68 ovex 6824 . . . . . . . . 9 (𝑃 − 1) ∈ V
69 op1stg 7328 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (1st ‘⟨0, (𝑃 − 1)⟩) = 0)
7067, 68, 69mp2an 666 . . . . . . . 8 (1st ‘⟨0, (𝑃 − 1)⟩) = 0
7166, 70syl6eq 2821 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = 0)
7271fveq2d 6337 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (𝐴‘(1st𝑘)) = (𝐴‘0))
73 fveq2 6333 . . . . . . . . 9 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (2nd ‘⟨0, (𝑃 − 1)⟩))
74 op2ndg 7329 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1))
7567, 68, 74mp2an 666 . . . . . . . . 9 (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1)
7673, 75syl6eq 2821 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (𝑃 − 1))
7776fveq2d 6337 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((ℝ D𝑛 𝐹)‘(2nd𝑘)) = ((ℝ D𝑛 𝐹)‘(𝑃 − 1)))
7877, 71fveq12d 6339 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) = (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
7972, 78oveq12d 6812 . . . . 5 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)))
803, 4, 9, 39, 65, 79fsumsplit1 40323 . . . 4 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))))
8180oveq1d 6809 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))))
8212, 43sseldi 3751 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
8310, 82ffvelrnd 6504 . . . . . 6 (𝜑 → (𝐴‘0) ∈ ℤ)
8417a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8522a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8667a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
8784, 85, 26, 28, 30, 49, 86, 44etransclem42 41011 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ)
8883, 87zmulcld 11691 . . . . 5 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℤ)
8988zcnd 11686 . . . 4 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℂ)
90 difss 3889 . . . . . . . 8 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))
91 ssfi 8337 . . . . . . . 8 ((((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin ∧ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
928, 90, 91mp2an 666 . . . . . . 7 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin
9392a1i 11 . . . . . 6 (𝜑 → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
94 eldifi 3884 . . . . . . 7 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
9594, 38sylan2 574 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9693, 95fsumzcl 14675 . . . . 5 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9796zcnd 11686 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
9849faccld 13276 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
9998nncnd 11239 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
10098nnne0d 11268 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
10189, 97, 99, 100divdird 11042 . . 3 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
1022, 81, 1013eqtrd 2809 . 2 (𝜑𝐾 = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
10326nnne0d 11268 . . 3 (𝜑𝑃 ≠ 0)
10483zcnd 11686 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℂ)
10587zcnd 11686 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℂ)
106104, 105, 99, 100divassd 11039 . . . 4 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) = ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
107 etransclem5 40974 . . . . . . 7 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
108 etransclem11 40980 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
10984, 85, 26, 28, 30, 49, 107, 108, 43, 86etransclem37 41006 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
11098nnzd 11684 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
111 dvdsval2 15193 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
112110, 100, 87, 111syl3anc 1476 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
113109, 112mpbid 222 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ)
11483, 113zmulcld 11691 . . . 4 (𝜑 → ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ∈ ℤ)
115106, 114eqeltrd 2850 . . 3 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ∈ ℤ)
11694, 39sylan2 574 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
11793, 99, 116, 100fsumdivc 14726 . . . 4 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
11816zcnd 11686 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
11994, 118sylan2 574 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℂ)
12094, 37sylan2 574 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
121120zcnd 11686 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
12299adantr 466 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℂ)
123100adantr 466 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ≠ 0)
124119, 121, 122, 123divassd 11039 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
12594, 16sylan2 574 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℤ)
12617a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ {ℝ, ℂ})
12722a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
12826adantr 466 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℕ)
12928adantr 466 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑀 ∈ ℕ0)
13094adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
131130, 33syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (2nd𝑘) ∈ ℕ0)
132130, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ (0...𝑀))
13394, 35sylan2 574 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ ℝ)
134126, 127, 128, 129, 30, 131, 107, 108, 132, 133etransclem37 41006 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
135110adantr 466 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℤ)
136 dvdsval2 15193 . . . . . . . . 9 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
137135, 123, 120, 136syl3anc 1476 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
138134, 137mpbid 222 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
139125, 138zmulcld 11691 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
140124, 139eqeltrd 2850 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
14193, 140fsumzcl 14675 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
142117, 141eqeltrd 2850 . . 3 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
143 1zzd 11611 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
144 zabscl 14262 . . . . . . . . . . . . 13 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
14583, 144syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
146143, 50, 1453jca 1122 . . . . . . . . . . 11 (𝜑 → (1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ))
147 nn0abscl 14261 . . . . . . . . . . . . . 14 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℕ0)
14883, 147syl 17 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ0)
149 etransclem44.a0 . . . . . . . . . . . . . 14 (𝜑 → (𝐴‘0) ≠ 0)
150104, 149absne0d 14395 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ≠ 0)
151 elnnne0 11509 . . . . . . . . . . . . 13 ((abs‘(𝐴‘0)) ∈ ℕ ↔ ((abs‘(𝐴‘0)) ∈ ℕ0 ∧ (abs‘(𝐴‘0)) ≠ 0))
152148, 150, 151sylanbrc 566 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ)
153152nnge1d 11266 . . . . . . . . . . 11 (𝜑 → 1 ≤ (abs‘(𝐴‘0)))
154 etransclem44.ap . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
155 zltlem1 11633 . . . . . . . . . . . . 13 (((abs‘(𝐴‘0)) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
156145, 46, 155syl2anc 567 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
157154, 156mpbid 222 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐴‘0)) ≤ (𝑃 − 1))
158146, 153, 157jca32 501 . . . . . . . . . 10 (𝜑 → ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
159 elfz2 12541 . . . . . . . . . 10 ((abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)) ↔ ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
160158, 159sylibr 224 . . . . . . . . 9 (𝜑 → (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)))
161 fzm1ndvds 15254 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
16226, 160, 161syl2anc 567 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
163 dvdsabsb 15211 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝐴‘0) ∈ ℤ) → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
16446, 83, 163syl2anc 567 . . . . . . . 8 (𝜑 → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
165162, 164mtbird 314 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ (𝐴‘0))
166 etransclem44.mp . . . . . . . 8 (𝜑 → (!‘𝑀) < 𝑃)
16728, 24, 166, 30etransclem41 41010 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
168165, 167jca 497 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
169 pm4.56 963 . . . . . 6 ((¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
170168, 169sylib 208 . . . . 5 (𝜑 → ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
171 euclemma 15633 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴‘0) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
17224, 83, 113, 171syl3anc 1476 . . . . 5 (𝜑 → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
173170, 172mtbird 314 . . . 4 (𝜑 → ¬ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
174106breq2d 4799 . . . 4 (𝜑 → (𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
175173, 174mtbird 314 . . 3 (𝜑 → ¬ 𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))))
17646adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℤ)
177176, 125, 1383jca 1122 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
178 eldifn 3885 . . . . . . . . . 10 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
17994adantr 466 . . . . . . . . . . . . 13 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
180 1st2nd2 7355 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
181179, 180syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
182 simpr 471 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (1st𝑘) = 0)
183 simpl 468 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (2nd𝑘) = (𝑃 − 1))
184182, 183opeq12d 4548 . . . . . . . . . . . . 13 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
185184adantl 467 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
186181, 185eqtrd 2805 . . . . . . . . . . 11 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨0, (𝑃 − 1)⟩)
187 velsn 4333 . . . . . . . . . . 11 (𝑘 ∈ {⟨0, (𝑃 − 1)⟩} ↔ 𝑘 = ⟨0, (𝑃 − 1)⟩)
188186, 187sylibr 224 . . . . . . . . . 10 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
189178, 188mtand 810 . . . . . . . . 9 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
190189adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
191128, 129, 30, 131, 132, 190, 108etransclem38 41007 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))
192 dvdsmultr2 15231 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))))
193177, 191, 192sylc 65 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
194193, 124breqtrrd 4815 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19593, 46, 140, 194fsumdvds 15240 . . . 4 (𝜑𝑃 ∥ Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
196195, 117breqtrrd 4815 . . 3 (𝜑𝑃 ∥ (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19746, 103, 115, 142, 175, 196etransclem9 40978 . 2 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))) ≠ 0)
198102, 197eqnetrd 3010 1 (𝜑𝐾 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 828  w3a 1071   = wceq 1631  wcel 2145  wne 2943  {crab 3065  Vcvv 3351  cdif 3721  wss 3724  ifcif 4226  {csn 4317  {cpr 4319  cop 4323   class class class wbr 4787  cmpt 4864   × cxp 5248  ran crn 5251  wf 6028  cfv 6032  (class class class)co 6794  1st c1st 7314  2nd c2nd 7315  𝑚 cmap 8010  Fincfn 8110  cc 10137  cr 10138  0cc0 10139  1c1 10140   + caddc 10142   · cmul 10144   < clt 10277  cle 10278  cmin 10469   / cdiv 10887  cn 11223  0cn0 11495  cz 11580  cuz 11889  (,)cioo 12381  ...cfz 12534  cexp 13068  !cfa 13265  abscabs 14183  Σcsu 14625  cprod 14843  cdvds 15190  cprime 15593  t crest 16290  TopOpenctopn 16291  topGenctg 16307  fldccnfld 19962   D𝑛 cdvn 23849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-addf 10218  ax-mulf 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-of 7045  df-om 7214  df-1st 7316  df-2nd 7317  df-supp 7448  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-2o 7715  df-oadd 7718  df-er 7897  df-map 8012  df-pm 8013  df-ixp 8064  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8966  df-cda 9193  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-ioo 12385  df-ico 12387  df-icc 12388  df-fz 12535  df-fzo 12675  df-fl 12802  df-mod 12878  df-seq 13010  df-exp 13069  df-fac 13266  df-bc 13295  df-hash 13323  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-clim 14428  df-sum 14626  df-prod 14844  df-dvds 15191  df-gcd 15426  df-prm 15594  df-struct 16067  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-mulr 16164  df-starv 16165  df-sca 16166  df-vsca 16167  df-ip 16168  df-tset 16169  df-ple 16170  df-ds 16173  df-unif 16174  df-hom 16175  df-cco 16176  df-rest 16292  df-topn 16293  df-0g 16311  df-gsum 16312  df-topgen 16313  df-pt 16314  df-prds 16317  df-xrs 16371  df-qtop 16376  df-imas 16377  df-xps 16379  df-mre 16455  df-mrc 16456  df-acs 16458  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-submnd 17545  df-mulg 17750  df-cntz 17958  df-cmn 18403  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-fbas 19959  df-fg 19960  df-cnfld 19963  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23851  df-dv 23852  df-dvn 23853
This theorem is referenced by:  etransclem47  41016
  Copyright terms: Public domain W3C validator