Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem44 Structured version   Visualization version   GIF version

Theorem etransclem44 42105
Description: The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem44.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem44.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem44.m (𝜑𝑀 ∈ ℕ0)
etransclem44.p (𝜑𝑃 ∈ ℙ)
etransclem44.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem44.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem44.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem44.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem44 (𝜑𝐾 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem44
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem44.k . . . 4 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
21a1i 11 . . 3 (𝜑𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
3 nfv 1892 . . . . 5 𝑘𝜑
4 nfcv 2949 . . . . 5 𝑘((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
5 fzfi 13190 . . . . . . 7 (0...𝑀) ∈ Fin
6 fzfi 13190 . . . . . . 7 (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin
7 xpfi 8635 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
85, 6, 7mp2an 688 . . . . . 6 ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin
98a1i 11 . . . . 5 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
10 etransclem44.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℤ)
1110adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
12 fzssnn0 41126 . . . . . . . . . 10 (0...𝑀) ⊆ ℕ0
13 xp1st 7577 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
1412, 13sseldi 3887 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
1514adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
1611, 15ffvelrnd 6717 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
17 reelprrecn 10475 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
1817a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
19 reopn 41096 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
20 eqid 2795 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 23094 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2219, 21eleqtri 2881 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2322a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
24 etransclem44.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
25 prmnn 15847 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
28 etransclem44.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
30 etransclem44.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 7578 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
32 elfznn0 12850 . . . . . . . . . 10 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
3433adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
3515nn0red 11804 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
3615nn0zd 11934 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℤ)
3718, 23, 27, 29, 30, 34, 35, 36etransclem42 42103 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
3816, 37zmulcld 11942 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
3938zcnd 11937 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
40 nn0uz 12129 . . . . . . . 8 0 = (ℤ‘0)
4128, 40syl6eleq 2893 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
42 eluzfz1 12764 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4341, 42syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
44 0zd 11841 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4528nn0zd 11934 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
4626nnzd 11935 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
4745, 46zmulcld 11942 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
48 nnm1nn0 11786 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4926, 48syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
5049nn0zd 11934 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℤ)
5147, 50zaddcld 11940 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ)
5244, 51, 503jca 1121 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ))
5349nn0ge0d 11806 . . . . . . . 8 (𝜑 → 0 ≤ (𝑃 − 1))
5426nnnn0d 11803 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ0)
5528, 54nn0mulcld 11808 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
5655nn0ge0d 11806 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑀 · 𝑃))
5749nn0red 11804 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
5847zred 11936 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℝ)
5957, 58addge02d 11077 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑀 · 𝑃) ↔ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
6056, 59mpbid 233 . . . . . . . 8 (𝜑 → (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
6152, 53, 60jca32 516 . . . . . . 7 (𝜑 → ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
62 elfz2 12749 . . . . . . 7 ((𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ↔ ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
6361, 62sylibr 235 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
64 opelxp 5479 . . . . . 6 (⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ↔ (0 ∈ (0...𝑀) ∧ (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
6543, 63, 64sylanbrc 583 . . . . 5 (𝜑 → ⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
66 fveq2 6538 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = (1st ‘⟨0, (𝑃 − 1)⟩))
67 0re 10489 . . . . . . . . 9 0 ∈ ℝ
68 ovex 7048 . . . . . . . . 9 (𝑃 − 1) ∈ V
69 op1stg 7557 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (1st ‘⟨0, (𝑃 − 1)⟩) = 0)
7067, 68, 69mp2an 688 . . . . . . . 8 (1st ‘⟨0, (𝑃 − 1)⟩) = 0
7166, 70syl6eq 2847 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = 0)
7271fveq2d 6542 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (𝐴‘(1st𝑘)) = (𝐴‘0))
73 fveq2 6538 . . . . . . . . 9 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (2nd ‘⟨0, (𝑃 − 1)⟩))
74 op2ndg 7558 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1))
7567, 68, 74mp2an 688 . . . . . . . . 9 (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1)
7673, 75syl6eq 2847 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (𝑃 − 1))
7776fveq2d 6542 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((ℝ D𝑛 𝐹)‘(2nd𝑘)) = ((ℝ D𝑛 𝐹)‘(𝑃 − 1)))
7877, 71fveq12d 6545 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) = (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
7972, 78oveq12d 7034 . . . . 5 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)))
803, 4, 9, 39, 65, 79fsumsplit1 41395 . . . 4 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))))
8180oveq1d 7031 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))))
8212, 43sseldi 3887 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
8310, 82ffvelrnd 6717 . . . . . 6 (𝜑 → (𝐴‘0) ∈ ℤ)
8417a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8522a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8667a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
8784, 85, 26, 28, 30, 49, 86, 44etransclem42 42103 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ)
8883, 87zmulcld 11942 . . . . 5 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℤ)
8988zcnd 11937 . . . 4 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℂ)
90 difss 4029 . . . . . . . 8 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))
91 ssfi 8584 . . . . . . . 8 ((((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin ∧ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
928, 90, 91mp2an 688 . . . . . . 7 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin
9392a1i 11 . . . . . 6 (𝜑 → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
94 eldifi 4024 . . . . . . 7 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
9594, 38sylan2 592 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9693, 95fsumzcl 14925 . . . . 5 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9796zcnd 11937 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
9849faccld 13494 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
9998nncnd 11502 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
10098nnne0d 11535 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
10189, 97, 99, 100divdird 11302 . . 3 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
1022, 81, 1013eqtrd 2835 . 2 (𝜑𝐾 = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
10326nnne0d 11535 . . 3 (𝜑𝑃 ≠ 0)
10483zcnd 11937 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℂ)
10587zcnd 11937 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℂ)
106104, 105, 99, 100divassd 11299 . . . 4 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) = ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
107 etransclem5 42066 . . . . . . 7 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
108 etransclem11 42072 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
10984, 85, 26, 28, 30, 49, 107, 108, 43, 86etransclem37 42098 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
11098nnzd 11935 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
111 dvdsval2 15443 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
112110, 100, 87, 111syl3anc 1364 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
113109, 112mpbid 233 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ)
11483, 113zmulcld 11942 . . . 4 (𝜑 → ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ∈ ℤ)
115106, 114eqeltrd 2883 . . 3 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ∈ ℤ)
11694, 39sylan2 592 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
11793, 99, 116, 100fsumdivc 14974 . . . 4 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
11816zcnd 11937 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
11994, 118sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℂ)
12094, 37sylan2 592 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
121120zcnd 11937 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
12299adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℂ)
123100adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ≠ 0)
124119, 121, 122, 123divassd 11299 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
12594, 16sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℤ)
12617a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ {ℝ, ℂ})
12722a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
12826adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℕ)
12928adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑀 ∈ ℕ0)
13094adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
131130, 33syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (2nd𝑘) ∈ ℕ0)
132130, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ (0...𝑀))
13394, 35sylan2 592 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ ℝ)
134126, 127, 128, 129, 30, 131, 107, 108, 132, 133etransclem37 42098 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
135110adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℤ)
136 dvdsval2 15443 . . . . . . . . 9 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
137135, 123, 120, 136syl3anc 1364 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
138134, 137mpbid 233 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
139125, 138zmulcld 11942 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
140124, 139eqeltrd 2883 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
14193, 140fsumzcl 14925 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
142117, 141eqeltrd 2883 . . 3 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
143 1zzd 11862 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
144 zabscl 14507 . . . . . . . . . . . . 13 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
14583, 144syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
146143, 50, 1453jca 1121 . . . . . . . . . . 11 (𝜑 → (1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ))
147 nn0abscl 14506 . . . . . . . . . . . . . 14 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℕ0)
14883, 147syl 17 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ0)
149 etransclem44.a0 . . . . . . . . . . . . . 14 (𝜑 → (𝐴‘0) ≠ 0)
150104, 149absne0d 14641 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ≠ 0)
151 elnnne0 11759 . . . . . . . . . . . . 13 ((abs‘(𝐴‘0)) ∈ ℕ ↔ ((abs‘(𝐴‘0)) ∈ ℕ0 ∧ (abs‘(𝐴‘0)) ≠ 0))
152148, 150, 151sylanbrc 583 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ)
153152nnge1d 11533 . . . . . . . . . . 11 (𝜑 → 1 ≤ (abs‘(𝐴‘0)))
154 etransclem44.ap . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
155 zltlem1 11884 . . . . . . . . . . . . 13 (((abs‘(𝐴‘0)) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
156145, 46, 155syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
157154, 156mpbid 233 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐴‘0)) ≤ (𝑃 − 1))
158146, 153, 157jca32 516 . . . . . . . . . 10 (𝜑 → ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
159 elfz2 12749 . . . . . . . . . 10 ((abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)) ↔ ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
160158, 159sylibr 235 . . . . . . . . 9 (𝜑 → (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)))
161 fzm1ndvds 15505 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
16226, 160, 161syl2anc 584 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
163 dvdsabsb 15462 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝐴‘0) ∈ ℤ) → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
16446, 83, 163syl2anc 584 . . . . . . . 8 (𝜑 → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
165162, 164mtbird 326 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ (𝐴‘0))
166 etransclem44.mp . . . . . . . 8 (𝜑 → (!‘𝑀) < 𝑃)
16728, 24, 166, 30etransclem41 42102 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
168165, 167jca 512 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
169 pm4.56 983 . . . . . 6 ((¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
170168, 169sylib 219 . . . . 5 (𝜑 → ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
171 euclemma 15886 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴‘0) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
17224, 83, 113, 171syl3anc 1364 . . . . 5 (𝜑 → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
173170, 172mtbird 326 . . . 4 (𝜑 → ¬ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
174106breq2d 4974 . . . 4 (𝜑 → (𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
175173, 174mtbird 326 . . 3 (𝜑 → ¬ 𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))))
17646adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℤ)
177176, 125, 1383jca 1121 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
178 eldifn 4025 . . . . . . . . . 10 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
17994adantr 481 . . . . . . . . . . . . 13 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
180 1st2nd2 7584 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
181179, 180syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
182 simpr 485 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (1st𝑘) = 0)
183 simpl 483 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (2nd𝑘) = (𝑃 − 1))
184182, 183opeq12d 4718 . . . . . . . . . . . . 13 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
185184adantl 482 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
186181, 185eqtrd 2831 . . . . . . . . . . 11 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨0, (𝑃 − 1)⟩)
187 velsn 4488 . . . . . . . . . . 11 (𝑘 ∈ {⟨0, (𝑃 − 1)⟩} ↔ 𝑘 = ⟨0, (𝑃 − 1)⟩)
188186, 187sylibr 235 . . . . . . . . . 10 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
189178, 188mtand 812 . . . . . . . . 9 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
190189adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
191128, 129, 30, 131, 132, 190, 108etransclem38 42099 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))
192 dvdsmultr2 15482 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))))
193177, 191, 192sylc 65 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
194193, 124breqtrrd 4990 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19593, 46, 140, 194fsumdvds 15491 . . . 4 (𝜑𝑃 ∥ Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
196195, 117breqtrrd 4990 . . 3 (𝜑𝑃 ∥ (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19746, 103, 115, 142, 175, 196etransclem9 42070 . 2 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))) ≠ 0)
198102, 197eqnetrd 3051 1 (𝜑𝐾 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  {crab 3109  Vcvv 3437  cdif 3856  wss 3859  ifcif 4381  {csn 4472  {cpr 4474  cop 4478   class class class wbr 4962  cmpt 5041   × cxp 5441  ran crn 5444  wf 6221  cfv 6225  (class class class)co 7016  1st c1st 7543  2nd c2nd 7544  𝑚 cmap 8256  Fincfn 8357  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  0cn0 11745  cz 11829  cuz 12093  (,)cioo 12588  ...cfz 12742  cexp 13279  !cfa 13483  abscabs 14427  Σcsu 14876  cprod 15092  cdvds 15440  cprime 15844  t crest 16523  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227   D𝑛 cdvn 24145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-prod 15093  df-dvds 15441  df-gcd 15677  df-prm 15845  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-dvn 24149
This theorem is referenced by:  etransclem47  42108
  Copyright terms: Public domain W3C validator