Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem44 Structured version   Visualization version   GIF version

Theorem etransclem44 41132
Description: The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem44.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem44.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem44.m (𝜑𝑀 ∈ ℕ0)
etransclem44.p (𝜑𝑃 ∈ ℙ)
etransclem44.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem44.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem44.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem44.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem44 (𝜑𝐾 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem44
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem44.k . . . 4 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
21a1i 11 . . 3 (𝜑𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
3 nfv 2009 . . . . 5 𝑘𝜑
4 nfcv 2907 . . . . 5 𝑘((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
5 fzfi 12979 . . . . . . 7 (0...𝑀) ∈ Fin
6 fzfi 12979 . . . . . . 7 (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin
7 xpfi 8438 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
85, 6, 7mp2an 683 . . . . . 6 ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin
98a1i 11 . . . . 5 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
10 etransclem44.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℤ)
1110adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
12 fzssnn0 40171 . . . . . . . . . 10 (0...𝑀) ⊆ ℕ0
13 xp1st 7398 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
1412, 13sseldi 3759 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
1514adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
1611, 15ffvelrnd 6550 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
17 reelprrecn 10281 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
1817a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
19 reopn 40141 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
20 eqid 2765 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 22885 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2219, 21eleqtri 2842 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2322a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
24 etransclem44.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
25 prmnn 15668 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
28 etransclem44.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
30 etransclem44.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 7399 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
32 elfznn0 12640 . . . . . . . . . 10 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
3433adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
3515nn0red 11599 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
3615nn0zd 11727 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℤ)
3718, 23, 27, 29, 30, 34, 35, 36etransclem42 41130 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
3816, 37zmulcld 11735 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
3938zcnd 11730 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
40 nn0uz 11922 . . . . . . . 8 0 = (ℤ‘0)
4128, 40syl6eleq 2854 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
42 eluzfz1 12555 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4341, 42syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
44 0zd 11636 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4528nn0zd 11727 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
4626nnzd 11728 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
4745, 46zmulcld 11735 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
48 nnm1nn0 11581 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4926, 48syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
5049nn0zd 11727 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℤ)
5147, 50zaddcld 11733 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ)
5244, 51, 503jca 1158 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ))
5349nn0ge0d 11601 . . . . . . . 8 (𝜑 → 0 ≤ (𝑃 − 1))
5426nnnn0d 11598 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ0)
5528, 54nn0mulcld 11603 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
5655nn0ge0d 11601 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑀 · 𝑃))
5749nn0red 11599 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
5847zred 11729 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℝ)
5957, 58addge02d 10870 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑀 · 𝑃) ↔ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
6056, 59mpbid 223 . . . . . . . 8 (𝜑 → (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
6152, 53, 60jca32 511 . . . . . . 7 (𝜑 → ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
62 elfz2 12540 . . . . . . 7 ((𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ↔ ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
6361, 62sylibr 225 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
64 opelxp 5313 . . . . . 6 (⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ↔ (0 ∈ (0...𝑀) ∧ (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
6543, 63, 64sylanbrc 578 . . . . 5 (𝜑 → ⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
66 fveq2 6375 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = (1st ‘⟨0, (𝑃 − 1)⟩))
67 0re 10295 . . . . . . . . 9 0 ∈ ℝ
68 ovex 6874 . . . . . . . . 9 (𝑃 − 1) ∈ V
69 op1stg 7378 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (1st ‘⟨0, (𝑃 − 1)⟩) = 0)
7067, 68, 69mp2an 683 . . . . . . . 8 (1st ‘⟨0, (𝑃 − 1)⟩) = 0
7166, 70syl6eq 2815 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = 0)
7271fveq2d 6379 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (𝐴‘(1st𝑘)) = (𝐴‘0))
73 fveq2 6375 . . . . . . . . 9 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (2nd ‘⟨0, (𝑃 − 1)⟩))
74 op2ndg 7379 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1))
7567, 68, 74mp2an 683 . . . . . . . . 9 (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1)
7673, 75syl6eq 2815 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (𝑃 − 1))
7776fveq2d 6379 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((ℝ D𝑛 𝐹)‘(2nd𝑘)) = ((ℝ D𝑛 𝐹)‘(𝑃 − 1)))
7877, 71fveq12d 6382 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) = (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
7972, 78oveq12d 6860 . . . . 5 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)))
803, 4, 9, 39, 65, 79fsumsplit1 40442 . . . 4 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))))
8180oveq1d 6857 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))))
8212, 43sseldi 3759 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
8310, 82ffvelrnd 6550 . . . . . 6 (𝜑 → (𝐴‘0) ∈ ℤ)
8417a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8522a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8667a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
8784, 85, 26, 28, 30, 49, 86, 44etransclem42 41130 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ)
8883, 87zmulcld 11735 . . . . 5 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℤ)
8988zcnd 11730 . . . 4 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℂ)
90 difss 3899 . . . . . . . 8 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))
91 ssfi 8387 . . . . . . . 8 ((((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin ∧ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
928, 90, 91mp2an 683 . . . . . . 7 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin
9392a1i 11 . . . . . 6 (𝜑 → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
94 eldifi 3894 . . . . . . 7 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
9594, 38sylan2 586 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9693, 95fsumzcl 14751 . . . . 5 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9796zcnd 11730 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
9849faccld 13275 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
9998nncnd 11292 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
10098nnne0d 11322 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
10189, 97, 99, 100divdird 11093 . . 3 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
1022, 81, 1013eqtrd 2803 . 2 (𝜑𝐾 = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
10326nnne0d 11322 . . 3 (𝜑𝑃 ≠ 0)
10483zcnd 11730 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℂ)
10587zcnd 11730 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℂ)
106104, 105, 99, 100divassd 11090 . . . 4 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) = ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
107 etransclem5 41093 . . . . . . 7 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
108 etransclem11 41099 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
10984, 85, 26, 28, 30, 49, 107, 108, 43, 86etransclem37 41125 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
11098nnzd 11728 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
111 dvdsval2 15268 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
112110, 100, 87, 111syl3anc 1490 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
113109, 112mpbid 223 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ)
11483, 113zmulcld 11735 . . . 4 (𝜑 → ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ∈ ℤ)
115106, 114eqeltrd 2844 . . 3 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ∈ ℤ)
11694, 39sylan2 586 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
11793, 99, 116, 100fsumdivc 14802 . . . 4 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
11816zcnd 11730 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
11994, 118sylan2 586 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℂ)
12094, 37sylan2 586 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
121120zcnd 11730 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
12299adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℂ)
123100adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ≠ 0)
124119, 121, 122, 123divassd 11090 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
12594, 16sylan2 586 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℤ)
12617a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ {ℝ, ℂ})
12722a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
12826adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℕ)
12928adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑀 ∈ ℕ0)
13094adantl 473 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
131130, 33syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (2nd𝑘) ∈ ℕ0)
132130, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ (0...𝑀))
13394, 35sylan2 586 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ ℝ)
134126, 127, 128, 129, 30, 131, 107, 108, 132, 133etransclem37 41125 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
135110adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℤ)
136 dvdsval2 15268 . . . . . . . . 9 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
137135, 123, 120, 136syl3anc 1490 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
138134, 137mpbid 223 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
139125, 138zmulcld 11735 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
140124, 139eqeltrd 2844 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
14193, 140fsumzcl 14751 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
142117, 141eqeltrd 2844 . . 3 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
143 1zzd 11655 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
144 zabscl 14338 . . . . . . . . . . . . 13 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
14583, 144syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
146143, 50, 1453jca 1158 . . . . . . . . . . 11 (𝜑 → (1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ))
147 nn0abscl 14337 . . . . . . . . . . . . . 14 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℕ0)
14883, 147syl 17 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ0)
149 etransclem44.a0 . . . . . . . . . . . . . 14 (𝜑 → (𝐴‘0) ≠ 0)
150104, 149absne0d 14471 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ≠ 0)
151 elnnne0 11554 . . . . . . . . . . . . 13 ((abs‘(𝐴‘0)) ∈ ℕ ↔ ((abs‘(𝐴‘0)) ∈ ℕ0 ∧ (abs‘(𝐴‘0)) ≠ 0))
152148, 150, 151sylanbrc 578 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ)
153152nnge1d 11320 . . . . . . . . . . 11 (𝜑 → 1 ≤ (abs‘(𝐴‘0)))
154 etransclem44.ap . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
155 zltlem1 11677 . . . . . . . . . . . . 13 (((abs‘(𝐴‘0)) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
156145, 46, 155syl2anc 579 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
157154, 156mpbid 223 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐴‘0)) ≤ (𝑃 − 1))
158146, 153, 157jca32 511 . . . . . . . . . 10 (𝜑 → ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
159 elfz2 12540 . . . . . . . . . 10 ((abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)) ↔ ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
160158, 159sylibr 225 . . . . . . . . 9 (𝜑 → (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)))
161 fzm1ndvds 15329 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
16226, 160, 161syl2anc 579 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
163 dvdsabsb 15286 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝐴‘0) ∈ ℤ) → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
16446, 83, 163syl2anc 579 . . . . . . . 8 (𝜑 → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
165162, 164mtbird 316 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ (𝐴‘0))
166 etransclem44.mp . . . . . . . 8 (𝜑 → (!‘𝑀) < 𝑃)
16728, 24, 166, 30etransclem41 41129 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
168165, 167jca 507 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
169 pm4.56 1011 . . . . . 6 ((¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
170168, 169sylib 209 . . . . 5 (𝜑 → ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
171 euclemma 15704 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴‘0) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
17224, 83, 113, 171syl3anc 1490 . . . . 5 (𝜑 → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
173170, 172mtbird 316 . . . 4 (𝜑 → ¬ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
174106breq2d 4821 . . . 4 (𝜑 → (𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
175173, 174mtbird 316 . . 3 (𝜑 → ¬ 𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))))
17646adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℤ)
177176, 125, 1383jca 1158 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
178 eldifn 3895 . . . . . . . . . 10 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
17994adantr 472 . . . . . . . . . . . . 13 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
180 1st2nd2 7405 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
181179, 180syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
182 simpr 477 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (1st𝑘) = 0)
183 simpl 474 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (2nd𝑘) = (𝑃 − 1))
184182, 183opeq12d 4567 . . . . . . . . . . . . 13 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
185184adantl 473 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
186181, 185eqtrd 2799 . . . . . . . . . . 11 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨0, (𝑃 − 1)⟩)
187 velsn 4350 . . . . . . . . . . 11 (𝑘 ∈ {⟨0, (𝑃 − 1)⟩} ↔ 𝑘 = ⟨0, (𝑃 − 1)⟩)
188186, 187sylibr 225 . . . . . . . . . 10 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
189178, 188mtand 850 . . . . . . . . 9 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
190189adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
191128, 129, 30, 131, 132, 190, 108etransclem38 41126 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))
192 dvdsmultr2 15306 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))))
193177, 191, 192sylc 65 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
194193, 124breqtrrd 4837 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19593, 46, 140, 194fsumdvds 15315 . . . 4 (𝜑𝑃 ∥ Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
196195, 117breqtrrd 4837 . . 3 (𝜑𝑃 ∥ (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19746, 103, 115, 142, 175, 196etransclem9 41097 . 2 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))) ≠ 0)
198102, 197eqnetrd 3004 1 (𝜑𝐾 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  {crab 3059  Vcvv 3350  cdif 3729  wss 3732  ifcif 4243  {csn 4334  {cpr 4336  cop 4340   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  𝑚 cmap 8060  Fincfn 8160  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  0cn0 11538  cz 11624  cuz 11886  (,)cioo 12377  ...cfz 12533  cexp 13067  !cfa 13264  abscabs 14259  Σcsu 14701  cprod 14918  cdvds 15265  cprime 15665  t crest 16347  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019   D𝑛 cdvn 23919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-prod 14919  df-dvds 15266  df-gcd 15498  df-prm 15666  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-dvn 23923
This theorem is referenced by:  etransclem47  41135
  Copyright terms: Public domain W3C validator