Step | Hyp | Ref
| Expression |
1 | | etransclem44.k |
. . . 4
⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
3 | | nfv 1892 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
4 | | nfcv 2949 |
. . . . 5
⊢
Ⅎ𝑘((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) |
5 | | fzfi 13190 |
. . . . . . 7
⊢
(0...𝑀) ∈
Fin |
6 | | fzfi 13190 |
. . . . . . 7
⊢
(0...((𝑀 ·
𝑃) + (𝑃 − 1))) ∈ Fin |
7 | | xpfi 8635 |
. . . . . . 7
⊢
(((0...𝑀) ∈ Fin
∧ (0...((𝑀 ·
𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
8 | 5, 6, 7 | mp2an 688 |
. . . . . 6
⊢
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
10 | | etransclem44.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) |
11 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ) |
12 | | fzssnn0 41126 |
. . . . . . . . . 10
⊢
(0...𝑀) ⊆
ℕ0 |
13 | | xp1st 7577 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈ (0...𝑀)) |
14 | 12, 13 | sseldi 3887 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈
ℕ0) |
15 | 14 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℕ0) |
16 | 11, 15 | ffvelrnd 6717 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℤ) |
17 | | reelprrecn 10475 |
. . . . . . . . 9
⊢ ℝ
∈ {ℝ, ℂ} |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
{ℝ, ℂ}) |
19 | | reopn 41096 |
. . . . . . . . . 10
⊢ ℝ
∈ (topGen‘ran (,)) |
20 | | eqid 2795 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
21 | 20 | tgioo2 23094 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
22 | 19, 21 | eleqtri 2881 |
. . . . . . . . 9
⊢ ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ) |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
24 | | etransclem44.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℙ) |
25 | | prmnn 15847 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
27 | 26 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ) |
28 | | etransclem44.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
29 | 28 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈
ℕ0) |
30 | | etransclem44.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
31 | | xp2nd 7578 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) |
32 | | elfznn0 12850 |
. . . . . . . . . 10
⊢
((2nd ‘𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd
‘𝑘) ∈
ℕ0) |
33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
ℕ0) |
34 | 33 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd
‘𝑘) ∈
ℕ0) |
35 | 15 | nn0red 11804 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℝ) |
36 | 15 | nn0zd 11934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℤ) |
37 | 18, 23, 27, 29, 30, 34, 35, 36 | etransclem42 42103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈
ℤ) |
38 | 16, 37 | zmulcld 11942 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℤ) |
39 | 38 | zcnd 11937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
40 | | nn0uz 12129 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
41 | 28, 40 | syl6eleq 2893 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
42 | | eluzfz1 12764 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
43 | 41, 42 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
44 | | 0zd 11841 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) |
45 | 28 | nn0zd 11934 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
46 | 26 | nnzd 11935 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℤ) |
47 | 45, 46 | zmulcld 11942 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 · 𝑃) ∈ ℤ) |
48 | | nnm1nn0 11786 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
49 | 26, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
50 | 49 | nn0zd 11934 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
51 | 47, 50 | zaddcld 11940 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈
ℤ) |
52 | 44, 51, 50 | 3jca 1121 |
. . . . . . . 8
⊢ (𝜑 → (0 ∈ ℤ ∧
((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈
ℤ)) |
53 | 49 | nn0ge0d 11806 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (𝑃 − 1)) |
54 | 26 | nnnn0d 11803 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
55 | 28, 54 | nn0mulcld 11808 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 · 𝑃) ∈
ℕ0) |
56 | 55 | nn0ge0d 11806 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑀 · 𝑃)) |
57 | 49 | nn0red 11804 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
58 | 47 | zred 11936 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 · 𝑃) ∈ ℝ) |
59 | 57, 58 | addge02d 11077 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ (𝑀 · 𝑃) ↔ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))) |
60 | 56, 59 | mpbid 233 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1))) |
61 | 52, 53, 60 | jca32 516 |
. . . . . . 7
⊢ (𝜑 → ((0 ∈ ℤ ∧
((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ)
∧ (0 ≤ (𝑃 − 1)
∧ (𝑃 − 1) ≤
((𝑀 · 𝑃) + (𝑃 − 1))))) |
62 | | elfz2 12749 |
. . . . . . 7
⊢ ((𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ↔ ((0 ∈ ℤ
∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ)
∧ (0 ≤ (𝑃 − 1)
∧ (𝑃 − 1) ≤
((𝑀 · 𝑃) + (𝑃 − 1))))) |
63 | 61, 62 | sylibr 235 |
. . . . . 6
⊢ (𝜑 → (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))) |
64 | | opelxp 5479 |
. . . . . 6
⊢ (〈0,
(𝑃 − 1)〉 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ↔ (0 ∈ (0...𝑀) ∧ (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))) |
65 | 43, 63, 64 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 〈0, (𝑃 − 1)〉 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))) |
66 | | fveq2 6538 |
. . . . . . . 8
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (1st
‘𝑘) = (1st
‘〈0, (𝑃 −
1)〉)) |
67 | | 0re 10489 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
68 | | ovex 7048 |
. . . . . . . . 9
⊢ (𝑃 − 1) ∈
V |
69 | | op1stg 7557 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (𝑃
− 1) ∈ V) → (1st ‘〈0, (𝑃 − 1)〉) = 0) |
70 | 67, 68, 69 | mp2an 688 |
. . . . . . . 8
⊢
(1st ‘〈0, (𝑃 − 1)〉) = 0 |
71 | 66, 70 | syl6eq 2847 |
. . . . . . 7
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (1st
‘𝑘) =
0) |
72 | 71 | fveq2d 6542 |
. . . . . 6
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (𝐴‘(1st ‘𝑘)) = (𝐴‘0)) |
73 | | fveq2 6538 |
. . . . . . . . 9
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (2nd
‘𝑘) = (2nd
‘〈0, (𝑃 −
1)〉)) |
74 | | op2ndg 7558 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (𝑃
− 1) ∈ V) → (2nd ‘〈0, (𝑃 − 1)〉) = (𝑃 − 1)) |
75 | 67, 68, 74 | mp2an 688 |
. . . . . . . . 9
⊢
(2nd ‘〈0, (𝑃 − 1)〉) = (𝑃 − 1) |
76 | 73, 75 | syl6eq 2847 |
. . . . . . . 8
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (2nd
‘𝑘) = (𝑃 − 1)) |
77 | 76 | fveq2d 6542 |
. . . . . . 7
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → ((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘)) = ((ℝ
D𝑛 𝐹)‘(𝑃 − 1))) |
78 | 77, 71 | fveq12d 6545 |
. . . . . 6
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) = (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) |
79 | 72, 78 | oveq12d 7034 |
. . . . 5
⊢ (𝑘 = 〈0, (𝑃 − 1)〉 → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) = ((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0))) |
80 | 3, 4, 9, 39, 65, 79 | fsumsplit1 41395 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) = (((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))))) |
81 | 80 | oveq1d 7031 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
((((𝐴‘0) ·
(((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) /
(!‘(𝑃 −
1)))) |
82 | 12, 43 | sseldi 3887 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
83 | 10, 82 | ffvelrnd 6717 |
. . . . . 6
⊢ (𝜑 → (𝐴‘0) ∈ ℤ) |
84 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
85 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
86 | 67 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
87 | 84, 85, 26, 28, 30, 49, 86, 44 | etransclem42 42103 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈
ℤ) |
88 | 83, 87 | zmulcld 11942 |
. . . . 5
⊢ (𝜑 → ((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈
ℤ) |
89 | 88 | zcnd 11937 |
. . . 4
⊢ (𝜑 → ((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈
ℂ) |
90 | | difss 4029 |
. . . . . . . 8
⊢
(((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ⊆
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) |
91 | | ssfi 8584 |
. . . . . . . 8
⊢
((((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin ∧ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ⊆
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∈
Fin) |
92 | 8, 90, 91 | mp2an 688 |
. . . . . . 7
⊢
(((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∈
Fin |
93 | 92 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∈
Fin) |
94 | | eldifi 4024 |
. . . . . . 7
⊢ (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) |
95 | 94, 38 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℤ) |
96 | 93, 95 | fsumzcl 14925 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℤ) |
97 | 96 | zcnd 11937 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
98 | 49 | faccld 13494 |
. . . . 5
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
99 | 98 | nncnd 11502 |
. . . 4
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
100 | 98 | nnne0d 11535 |
. . . 4
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
101 | 89, 97, 99, 100 | divdird 11302 |
. . 3
⊢ (𝜑 → ((((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)))) /
(!‘(𝑃 − 1))) =
((((𝐴‘0) ·
(((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))))) |
102 | 2, 81, 101 | 3eqtrd 2835 |
. 2
⊢ (𝜑 → 𝐾 = ((((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))))) |
103 | 26 | nnne0d 11535 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 0) |
104 | 83 | zcnd 11937 |
. . . . 5
⊢ (𝜑 → (𝐴‘0) ∈ ℂ) |
105 | 87 | zcnd 11937 |
. . . . 5
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈
ℂ) |
106 | 104, 105,
99, 100 | divassd 11299 |
. . . 4
⊢ (𝜑 → (((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) = ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))) |
107 | | etransclem5 42066 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
108 | | etransclem11 42072 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
↦ {𝑑 ∈
((0...𝑚)
↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
109 | 84, 85, 26, 28, 30, 49, 107, 108, 43, 86 | etransclem37 42098 |
. . . . . 6
⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) |
110 | 98 | nnzd 11935 |
. . . . . . 7
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℤ) |
111 | | dvdsval2 15443 |
. . . . . . 7
⊢
(((!‘(𝑃
− 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ) →
((!‘(𝑃 − 1))
∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈
ℤ)) |
112 | 110, 100,
87, 111 | syl3anc 1364 |
. . . . . 6
⊢ (𝜑 → ((!‘(𝑃 − 1)) ∥ (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈
ℤ)) |
113 | 109, 112 | mpbid 233 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈
ℤ) |
114 | 83, 113 | zmulcld 11942 |
. . . 4
⊢ (𝜑 → ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ∈
ℤ) |
115 | 106, 114 | eqeltrd 2883 |
. . 3
⊢ (𝜑 → (((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ∈
ℤ) |
116 | 94, 39 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
117 | 93, 99, 116, 100 | fsumdivc 14974 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
Σ𝑘 ∈
(((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})(((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
118 | 16 | zcnd 11937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℂ) |
119 | 94, 118 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(𝐴‘(1st
‘𝑘)) ∈
ℂ) |
120 | 94, 37 | sylan2 592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈
ℤ) |
121 | 120 | zcnd 11937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈
ℂ) |
122 | 99 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(!‘(𝑃 − 1))
∈ ℂ) |
123 | 100 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(!‘(𝑃 − 1))
≠ 0) |
124 | 119, 121,
122, 123 | divassd 11299 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
((𝐴‘(1st
‘𝑘)) ·
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 −
1))))) |
125 | 94, 16 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(𝐴‘(1st
‘𝑘)) ∈
ℤ) |
126 | 17 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
ℝ ∈ {ℝ, ℂ}) |
127 | 22 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
ℝ ∈ ((TopOpen‘ℂfld) ↾t
ℝ)) |
128 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑃 ∈
ℕ) |
129 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑀 ∈
ℕ0) |
130 | 94 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) |
131 | 130, 33 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(2nd ‘𝑘)
∈ ℕ0) |
132 | 130, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(1st ‘𝑘)
∈ (0...𝑀)) |
133 | 94, 35 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(1st ‘𝑘)
∈ ℝ) |
134 | 126, 127,
128, 129, 30, 131, 107, 108, 132, 133 | etransclem37 42098 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(!‘(𝑃 − 1))
∥ (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) |
135 | 110 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(!‘(𝑃 − 1))
∈ ℤ) |
136 | | dvdsval2 15443 |
. . . . . . . . 9
⊢
(((!‘(𝑃
− 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈ ℤ)
→ ((!‘(𝑃 −
1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ↔
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ)) |
137 | 135, 123,
120, 136 | syl3anc 1364 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
((!‘(𝑃 − 1))
∥ (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ↔
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ)) |
138 | 134, 137 | mpbid 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ) |
139 | 125, 138 | zmulcld 11942 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
((𝐴‘(1st
‘𝑘)) ·
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1))))
∈ ℤ) |
140 | 124, 139 | eqeltrd 2883 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
141 | 93, 140 | fsumzcl 14925 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})(((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
142 | 117, 141 | eqeltrd 2883 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
143 | | 1zzd 11862 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
144 | | zabscl 14507 |
. . . . . . . . . . . . 13
⊢ ((𝐴‘0) ∈ ℤ →
(abs‘(𝐴‘0))
∈ ℤ) |
145 | 83, 144 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴‘0)) ∈
ℤ) |
146 | 143, 50, 145 | 3jca 1121 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑃 − 1) ∈
ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ)) |
147 | | nn0abscl 14506 |
. . . . . . . . . . . . . 14
⊢ ((𝐴‘0) ∈ ℤ →
(abs‘(𝐴‘0))
∈ ℕ0) |
148 | 83, 147 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (abs‘(𝐴‘0)) ∈
ℕ0) |
149 | | etransclem44.a0 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴‘0) ≠ 0) |
150 | 104, 149 | absne0d 14641 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (abs‘(𝐴‘0)) ≠
0) |
151 | | elnnne0 11759 |
. . . . . . . . . . . . 13
⊢
((abs‘(𝐴‘0)) ∈ ℕ ↔
((abs‘(𝐴‘0))
∈ ℕ0 ∧ (abs‘(𝐴‘0)) ≠ 0)) |
152 | 148, 150,
151 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴‘0)) ∈
ℕ) |
153 | 152 | nnge1d 11533 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ (abs‘(𝐴‘0))) |
154 | | etransclem44.ap |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) |
155 | | zltlem1 11884 |
. . . . . . . . . . . . 13
⊢
(((abs‘(𝐴‘0)) ∈ ℤ ∧ 𝑃 ∈ ℤ) →
((abs‘(𝐴‘0))
< 𝑃 ↔
(abs‘(𝐴‘0))
≤ (𝑃 −
1))) |
156 | 145, 46, 155 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))) |
157 | 154, 156 | mpbid 233 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘(𝐴‘0)) ≤ (𝑃 − 1)) |
158 | 146, 153,
157 | jca32 516 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 ∈ ℤ ∧
(𝑃 − 1) ∈
ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤
(abs‘(𝐴‘0))
∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))) |
159 | | elfz2 12749 |
. . . . . . . . . 10
⊢
((abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)) ↔ ((1 ∈ ℤ ∧
(𝑃 − 1) ∈
ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤
(abs‘(𝐴‘0))
∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))) |
160 | 158, 159 | sylibr 235 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1))) |
161 | | fzm1ndvds 15505 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧
(abs‘(𝐴‘0))
∈ (1...(𝑃 − 1)))
→ ¬ 𝑃 ∥
(abs‘(𝐴‘0))) |
162 | 26, 160, 161 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑃 ∥ (abs‘(𝐴‘0))) |
163 | | dvdsabsb 15462 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℤ ∧ (𝐴‘0) ∈ ℤ) →
(𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0)))) |
164 | 46, 83, 163 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0)))) |
165 | 162, 164 | mtbird 326 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑃 ∥ (𝐴‘0)) |
166 | | etransclem44.mp |
. . . . . . . 8
⊢ (𝜑 → (!‘𝑀) < 𝑃) |
167 | 28, 24, 166, 30 | etransclem41 42102 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) |
168 | 165, 167 | jca 512 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))) |
169 | | pm4.56 983 |
. . . . . 6
⊢ ((¬
𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ ¬
(𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))) |
170 | 168, 169 | sylib 219 |
. . . . 5
⊢ (𝜑 → ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))) |
171 | | euclemma 15886 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴‘0) ∈ ℤ ∧
((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ)
→ (𝑃 ∥ ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 −
1)))))) |
172 | 24, 83, 113, 171 | syl3anc 1364 |
. . . . 5
⊢ (𝜑 → (𝑃 ∥ ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛
𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 −
1)))))) |
173 | 170, 172 | mtbird 326 |
. . . 4
⊢ (𝜑 → ¬ 𝑃 ∥ ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))) |
174 | 106 | breq2d 4974 |
. . . 4
⊢ (𝜑 → (𝑃 ∥ (((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((𝐴‘0) · ((((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 −
1)))))) |
175 | 173, 174 | mtbird 326 |
. . 3
⊢ (𝜑 → ¬ 𝑃 ∥ (((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1)))) |
176 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑃 ∈
ℤ) |
177 | 176, 125,
138 | 3jca 1121 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
(𝑃 ∈ ℤ ∧
(𝐴‘(1st
‘𝑘)) ∈ ℤ
∧ ((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ)) |
178 | | eldifn 4025 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) → ¬
𝑘 ∈ {〈0, (𝑃 −
1)〉}) |
179 | 94 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∧
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) → 𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))) |
180 | | 1st2nd2 7584 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → 𝑘 = 〈(1st ‘𝑘), (2nd ‘𝑘)〉) |
181 | 179, 180 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∧
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) → 𝑘 =
〈(1st ‘𝑘), (2nd ‘𝑘)〉) |
182 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑘) = (𝑃 − 1) ∧ (1st
‘𝑘) = 0) →
(1st ‘𝑘) =
0) |
183 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑘) = (𝑃 − 1) ∧ (1st
‘𝑘) = 0) →
(2nd ‘𝑘) =
(𝑃 −
1)) |
184 | 182, 183 | opeq12d 4718 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑘) = (𝑃 − 1) ∧ (1st
‘𝑘) = 0) →
〈(1st ‘𝑘), (2nd ‘𝑘)〉 = 〈0, (𝑃 − 1)〉) |
185 | 184 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∧
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) → 〈(1st ‘𝑘), (2nd ‘𝑘)〉 = 〈0, (𝑃 − 1)〉) |
186 | 181, 185 | eqtrd 2831 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∧
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) → 𝑘 = 〈0,
(𝑃 −
1)〉) |
187 | | velsn 4488 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {〈0, (𝑃 − 1)〉} ↔ 𝑘 = 〈0, (𝑃 − 1)〉) |
188 | 186, 187 | sylibr 235 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) ∧
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) → 𝑘 ∈
{〈0, (𝑃 −
1)〉}) |
189 | 178, 188 | mtand 812 |
. . . . . . . . 9
⊢ (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉}) → ¬
((2nd ‘𝑘)
= (𝑃 − 1) ∧
(1st ‘𝑘) =
0)) |
190 | 189 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
¬ ((2nd ‘𝑘) = (𝑃 − 1) ∧ (1st
‘𝑘) =
0)) |
191 | 128, 129,
30, 131, 132, 190, 108 | etransclem38 42099 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑃 ∥ ((((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 −
1)))) |
192 | | dvdsmultr2 15482 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ (𝐴‘(1st
‘𝑘)) ∈ ℤ
∧ ((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ) → (𝑃
∥ ((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
→ 𝑃 ∥ ((𝐴‘(1st
‘𝑘)) ·
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 −
1)))))) |
193 | 177, 191,
192 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑃 ∥ ((𝐴‘(1st
‘𝑘)) ·
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 −
1))))) |
194 | 193, 124 | breqtrrd 4990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})) →
𝑃 ∥ (((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
195 | 93, 46, 140, 194 | fsumdvds 15491 |
. . . 4
⊢ (𝜑 → 𝑃 ∥ Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})(((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
196 | 195, 117 | breqtrrd 4990 |
. . 3
⊢ (𝜑 → 𝑃 ∥ (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
197 | 46, 103, 115, 142, 175, 196 | etransclem9 42070 |
. 2
⊢ (𝜑 → ((((𝐴‘0) · (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {〈0, (𝑃 − 1)〉})((𝐴‘(1st
‘𝑘)) ·
(((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))))
≠ 0) |
198 | 102, 197 | eqnetrd 3051 |
1
⊢ (𝜑 → 𝐾 ≠ 0) |