Step | Hyp | Ref
| Expression |
1 | | etransclem45.k |
. 2
β’ πΎ = (Ξ£π β ((0...π) Γ (0...π
))((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β
1))) |
2 | | fzfi 13933 |
. . . . . 6
β’
(0...π) β
Fin |
3 | | fzfi 13933 |
. . . . . 6
β’
(0...π
) β
Fin |
4 | | xpfi 9313 |
. . . . . 6
β’
(((0...π) β Fin
β§ (0...π
) β Fin)
β ((0...π) Γ
(0...π
)) β
Fin) |
5 | 2, 3, 4 | mp2an 690 |
. . . . 5
β’
((0...π) Γ
(0...π
)) β
Fin |
6 | 5 | a1i 11 |
. . . 4
β’ (π β ((0...π) Γ (0...π
)) β Fin) |
7 | | etransclem45.p |
. . . . . . 7
β’ (π β π β β) |
8 | | nnm1nn0 12509 |
. . . . . . 7
β’ (π β β β (π β 1) β
β0) |
9 | 7, 8 | syl 17 |
. . . . . 6
β’ (π β (π β 1) β
β0) |
10 | 9 | faccld 14240 |
. . . . 5
β’ (π β (!β(π β 1)) β
β) |
11 | 10 | nncnd 12224 |
. . . 4
β’ (π β (!β(π β 1)) β
β) |
12 | | etransclem45.a |
. . . . . . . 8
β’ (π β π΄:β0βΆβ€) |
13 | 12 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β π΄:β0βΆβ€) |
14 | | xp1st 8003 |
. . . . . . . . 9
β’ (π β ((0...π) Γ (0...π
)) β (1st βπ) β (0...π)) |
15 | | elfznn0 13590 |
. . . . . . . . 9
β’
((1st βπ) β (0...π) β (1st βπ) β
β0) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
β’ (π β ((0...π) Γ (0...π
)) β (1st βπ) β
β0) |
17 | 16 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (1st βπ) β
β0) |
18 | 13, 17 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (π΄β(1st βπ)) β
β€) |
19 | 18 | zcnd 12663 |
. . . . 5
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (π΄β(1st βπ)) β
β) |
20 | | reelprrecn 11198 |
. . . . . . . 8
β’ β
β {β, β} |
21 | 20 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β β β {β,
β}) |
22 | | reopn 43985 |
. . . . . . . . 9
β’ β
β (topGenβran (,)) |
23 | | eqid 2732 |
. . . . . . . . . 10
β’
(TopOpenββfld) =
(TopOpenββfld) |
24 | 23 | tgioo2 24310 |
. . . . . . . . 9
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
25 | 22, 24 | eleqtri 2831 |
. . . . . . . 8
β’ β
β ((TopOpenββfld) βΎt
β) |
26 | 25 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β β β
((TopOpenββfld) βΎt
β)) |
27 | 7 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β π β β) |
28 | | etransclem45.m |
. . . . . . . 8
β’ (π β π β
β0) |
29 | 28 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β π β
β0) |
30 | | etransclem45.f |
. . . . . . 7
β’ πΉ = (π₯ β β β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) |
31 | | xp2nd 8004 |
. . . . . . . . 9
β’ (π β ((0...π) Γ (0...π
)) β (2nd βπ) β (0...π
)) |
32 | | elfznn0 13590 |
. . . . . . . . 9
β’
((2nd βπ) β (0...π
) β (2nd βπ) β
β0) |
33 | 31, 32 | syl 17 |
. . . . . . . 8
β’ (π β ((0...π) Γ (0...π
)) β (2nd βπ) β
β0) |
34 | 33 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (2nd βπ) β
β0) |
35 | 21, 26, 27, 29, 30, 34 | etransclem33 44969 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β ((β Dπ
πΉ)β(2nd
βπ)):ββΆβ) |
36 | 17 | nn0red 12529 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (1st βπ) β
β) |
37 | 35, 36 | ffvelcdmd 7084 |
. . . . 5
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (((β Dπ
πΉ)β(2nd
βπ))β(1st βπ)) β
β) |
38 | 19, 37 | mulcld 11230 |
. . . 4
β’ ((π β§ π β ((0...π) Γ (0...π
))) β ((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) β
β) |
39 | 10 | nnne0d 12258 |
. . . 4
β’ (π β (!β(π β 1)) β
0) |
40 | 6, 11, 38, 39 | fsumdivc 15728 |
. . 3
β’ (π β (Ξ£π β ((0...π) Γ (0...π
))((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β 1))) =
Ξ£π β ((0...π) Γ (0...π
))(((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β
1)))) |
41 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (!β(π β 1)) β
β) |
42 | 39 | adantr 481 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (!β(π β 1)) β 0) |
43 | 19, 37, 41, 42 | divassd 12021 |
. . . . 5
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β 1))) =
((π΄β(1st
βπ)) Β·
((((β Dπ πΉ)β(2nd βπ))β(1st
βπ)) /
(!β(π β
1))))) |
44 | | etransclem5 44941 |
. . . . . . . 8
β’ (π β (0...π) β¦ (π¦ β β β¦ ((π¦ β π)βif(π = 0, (π β 1), π)))) = (π β (0...π) β¦ (π₯ β β β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) |
45 | | etransclem11 44947 |
. . . . . . . 8
β’ (π β β0
β¦ {π β
((0...π) βm
(0...π)) β£
Ξ£π β (0...π)(πβπ) = π}) = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
46 | 14 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (1st βπ) β (0...π)) |
47 | 21, 26, 27, 29, 30, 34, 44, 45, 46, 36 | etransclem37 44973 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (!β(π β 1)) β₯ (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) |
48 | 10 | nnzd 12581 |
. . . . . . . . 9
β’ (π β (!β(π β 1)) β
β€) |
49 | 48 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (!β(π β 1)) β
β€) |
50 | 17 | nn0zd 12580 |
. . . . . . . . 9
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (1st βπ) β
β€) |
51 | 21, 26, 27, 29, 30, 34, 36, 50 | etransclem42 44978 |
. . . . . . . 8
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (((β Dπ
πΉ)β(2nd
βπ))β(1st βπ)) β
β€) |
52 | | dvdsval2 16196 |
. . . . . . . 8
β’
(((!β(π
β 1)) β β€ β§ (!β(π β 1)) β 0 β§ (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ)) β β€)
β ((!β(π β
1)) β₯ (((β Dπ πΉ)β(2nd βπ))β(1st
βπ)) β
((((β Dπ πΉ)β(2nd βπ))β(1st
βπ)) /
(!β(π β 1)))
β β€)) |
53 | 49, 42, 51, 52 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β ((0...π) Γ (0...π
))) β ((!β(π β 1)) β₯ (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ)) β
((((β Dπ πΉ)β(2nd βπ))β(1st
βπ)) /
(!β(π β 1)))
β β€)) |
54 | 47, 53 | mpbid 231 |
. . . . . 6
β’ ((π β§ π β ((0...π) Γ (0...π
))) β ((((β Dπ
πΉ)β(2nd
βπ))β(1st βπ)) / (!β(π β 1))) β
β€) |
55 | 18, 54 | zmulcld 12668 |
. . . . 5
β’ ((π β§ π β ((0...π) Γ (0...π
))) β ((π΄β(1st βπ)) Β· ((((β
Dπ πΉ)β(2nd βπ))β(1st
βπ)) /
(!β(π β 1))))
β β€) |
56 | 43, 55 | eqeltrd 2833 |
. . . 4
β’ ((π β§ π β ((0...π) Γ (0...π
))) β (((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β 1)))
β β€) |
57 | 6, 56 | fsumzcl 15677 |
. . 3
β’ (π β Ξ£π β ((0...π) Γ (0...π
))(((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β 1)))
β β€) |
58 | 40, 57 | eqeltrd 2833 |
. 2
β’ (π β (Ξ£π β ((0...π) Γ (0...π
))((π΄β(1st βπ)) Β· (((β
Dπ πΉ)β(2nd βπ))β(1st
βπ))) /
(!β(π β 1)))
β β€) |
59 | 1, 58 | eqeltrid 2837 |
1
β’ (π β πΎ β β€) |