Step | Hyp | Ref
| Expression |
1 | | etransclem45.k |
. 2
⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))) |
2 | | fzfi 13545 |
. . . . . 6
⊢
(0...𝑀) ∈
Fin |
3 | | fzfi 13545 |
. . . . . 6
⊢
(0...𝑅) ∈
Fin |
4 | | xpfi 8942 |
. . . . . 6
⊢
(((0...𝑀) ∈ Fin
∧ (0...𝑅) ∈ Fin)
→ ((0...𝑀) ×
(0...𝑅)) ∈
Fin) |
5 | 2, 3, 4 | mp2an 692 |
. . . . 5
⊢
((0...𝑀) ×
(0...𝑅)) ∈
Fin |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → ((0...𝑀) × (0...𝑅)) ∈ Fin) |
7 | | etransclem45.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℕ) |
8 | | nnm1nn0 12131 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
10 | 9 | faccld 13850 |
. . . . 5
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
11 | 10 | nncnd 11846 |
. . . 4
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
12 | | etransclem45.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) |
13 | 12 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝐴:ℕ0⟶ℤ) |
14 | | xp1st 7793 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st ‘𝑘) ∈ (0...𝑀)) |
15 | | elfznn0 13205 |
. . . . . . . . 9
⊢
((1st ‘𝑘) ∈ (0...𝑀) → (1st ‘𝑘) ∈
ℕ0) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st ‘𝑘) ∈
ℕ0) |
17 | 16 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st ‘𝑘) ∈
ℕ0) |
18 | 13, 17 | ffvelrnd 6905 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st ‘𝑘)) ∈
ℤ) |
19 | 18 | zcnd 12283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st ‘𝑘)) ∈
ℂ) |
20 | | reelprrecn 10821 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈ {ℝ,
ℂ}) |
22 | | reopn 42500 |
. . . . . . . . 9
⊢ ℝ
∈ (topGen‘ran (,)) |
23 | | eqid 2737 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
24 | 23 | tgioo2 23700 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
25 | 22, 24 | eleqtri 2836 |
. . . . . . . 8
⊢ ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ) |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
27 | 7 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑃 ∈ ℕ) |
28 | | etransclem45.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
29 | 28 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑀 ∈
ℕ0) |
30 | | etransclem45.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
31 | | xp2nd 7794 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd ‘𝑘) ∈ (0...𝑅)) |
32 | | elfznn0 13205 |
. . . . . . . . 9
⊢
((2nd ‘𝑘) ∈ (0...𝑅) → (2nd ‘𝑘) ∈
ℕ0) |
33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd ‘𝑘) ∈
ℕ0) |
34 | 33 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (2nd ‘𝑘) ∈
ℕ0) |
35 | 21, 26, 27, 29, 30, 34 | etransclem33 43483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((ℝ D𝑛
𝐹)‘(2nd
‘𝑘)):ℝ⟶ℂ) |
36 | 17 | nn0red 12151 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st ‘𝑘) ∈
ℝ) |
37 | 35, 36 | ffvelrnd 6905 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛
𝐹)‘(2nd
‘𝑘))‘(1st ‘𝑘)) ∈
ℂ) |
38 | 19, 37 | mulcld 10853 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
39 | 10 | nnne0d 11880 |
. . . 4
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
40 | 6, 11, 38, 39 | fsumdivc 15350 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
41 | 11 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈
ℂ) |
42 | 39 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ≠ 0) |
43 | 19, 37, 41, 42 | divassd 11643 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
((𝐴‘(1st
‘𝑘)) ·
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 −
1))))) |
44 | | etransclem5 43455 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
45 | | etransclem11 43461 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
↦ {𝑑 ∈
((0...𝑚) ↑m
(0...𝑀)) ∣
Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
46 | 14 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st ‘𝑘) ∈ (0...𝑀)) |
47 | 21, 26, 27, 29, 30, 34, 44, 45, 46, 36 | etransclem37 43487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∥ (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) |
48 | 10 | nnzd 12281 |
. . . . . . . . 9
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℤ) |
49 | 48 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈
ℤ) |
50 | 17 | nn0zd 12280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st ‘𝑘) ∈
ℤ) |
51 | 21, 26, 27, 29, 30, 34, 36, 50 | etransclem42 43492 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛
𝐹)‘(2nd
‘𝑘))‘(1st ‘𝑘)) ∈
ℤ) |
52 | | dvdsval2 15818 |
. . . . . . . 8
⊢
(((!‘(𝑃
− 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈ ℤ)
→ ((!‘(𝑃 −
1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ↔
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ)) |
53 | 49, 42, 51, 52 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((!‘(𝑃 − 1)) ∥ (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ↔
((((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1)))
∈ ℤ)) |
54 | 47, 53 | mpbid 235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((((ℝ D𝑛
𝐹)‘(2nd
‘𝑘))‘(1st ‘𝑘)) / (!‘(𝑃 − 1))) ∈
ℤ) |
55 | 18, 54 | zmulcld 12288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st ‘𝑘)) · ((((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) /
(!‘(𝑃 − 1))))
∈ ℤ) |
56 | 43, 55 | eqeltrd 2838 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
57 | 6, 56 | fsumzcl 15299 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
58 | 40, 57 | eqeltrd 2838 |
. 2
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
59 | 1, 58 | eqeltrid 2842 |
1
⊢ (𝜑 → 𝐾 ∈ ℤ) |