Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem45 Structured version   Visualization version   GIF version

Theorem etransclem45 43710
Description: 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem45.p (𝜑𝑃 ∈ ℕ)
etransclem45.m (𝜑𝑀 ∈ ℕ0)
etransclem45.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem45.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem45.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem45 (𝜑𝐾 ∈ ℤ)
Distinct variable groups:   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐹(𝑥,𝑗,𝑘)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem45
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem45.k . 2 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
2 fzfi 13620 . . . . . 6 (0...𝑀) ∈ Fin
3 fzfi 13620 . . . . . 6 (0...𝑅) ∈ Fin
4 xpfi 9015 . . . . . 6 (((0...𝑀) ∈ Fin ∧ (0...𝑅) ∈ Fin) → ((0...𝑀) × (0...𝑅)) ∈ Fin)
52, 3, 4mp2an 688 . . . . 5 ((0...𝑀) × (0...𝑅)) ∈ Fin
65a1i 11 . . . 4 (𝜑 → ((0...𝑀) × (0...𝑅)) ∈ Fin)
7 etransclem45.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
8 nnm1nn0 12204 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
109faccld 13926 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
1110nncnd 11919 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
12 etransclem45.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
1312adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝐴:ℕ0⟶ℤ)
14 xp1st 7836 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st𝑘) ∈ (0...𝑀))
15 elfznn0 13278 . . . . . . . . 9 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
1614, 15syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st𝑘) ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℕ0)
1813, 17ffvelrnd 6944 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st𝑘)) ∈ ℤ)
1918zcnd 12356 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st𝑘)) ∈ ℂ)
20 reelprrecn 10894 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2120a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈ {ℝ, ℂ})
22 reopn 42717 . . . . . . . . 9 ℝ ∈ (topGen‘ran (,))
23 eqid 2738 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423tgioo2 23872 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2522, 24eleqtri 2837 . . . . . . . 8 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2625a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
277adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑃 ∈ ℕ)
28 etransclem45.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
2928adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑀 ∈ ℕ0)
30 etransclem45.f . . . . . . 7 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 7837 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd𝑘) ∈ (0...𝑅))
32 elfznn0 13278 . . . . . . . . 9 ((2nd𝑘) ∈ (0...𝑅) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd𝑘) ∈ ℕ0)
3433adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (2nd𝑘) ∈ ℕ0)
3521, 26, 27, 29, 30, 34etransclem33 43698 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
3617nn0red 12224 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℝ)
3735, 36ffvelrnd 6944 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
3819, 37mulcld 10926 . . . 4 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
3910nnne0d 11953 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
406, 11, 38, 39fsumdivc 15426 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
4111adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈ ℂ)
4239adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ≠ 0)
4319, 37, 41, 42divassd 11716 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
44 etransclem5 43670 . . . . . . . 8 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
45 etransclem11 43676 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4614adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ (0...𝑀))
4721, 26, 27, 29, 30, 34, 44, 45, 46, 36etransclem37 43702 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
4810nnzd 12354 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
4948adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈ ℤ)
5017nn0zd 12353 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℤ)
5121, 26, 27, 29, 30, 34, 36, 50etransclem42 43707 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
52 dvdsval2 15894 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
5349, 42, 51, 52syl3anc 1369 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
5447, 53mpbid 231 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
5518, 54zmulcld 12361 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
5643, 55eqeltrd 2839 . . . 4 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
576, 56fsumzcl 15375 . . 3 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
5840, 57eqeltrd 2839 . 2 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
591, 58eqeltrid 2843 1 (𝜑𝐾 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  (,)cioo 13008  ...cfz 13168  cexp 13710  !cfa 13915  Σcsu 15325  cprod 15543  cdvds 15891  t crest 17048  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510   D𝑛 cdvn 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-prod 15544  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-dvn 24937
This theorem is referenced by:  etransclem47  43712
  Copyright terms: Public domain W3C validator