Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem45 Structured version   Visualization version   GIF version

Theorem etransclem45 46234
Description: 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem45.p (𝜑𝑃 ∈ ℕ)
etransclem45.m (𝜑𝑀 ∈ ℕ0)
etransclem45.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem45.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem45.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem45 (𝜑𝐾 ∈ ℤ)
Distinct variable groups:   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐹(𝑥,𝑗,𝑘)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem45
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem45.k . 2 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
2 fzfi 14009 . . . . . 6 (0...𝑀) ∈ Fin
3 fzfi 14009 . . . . . 6 (0...𝑅) ∈ Fin
4 xpfi 9355 . . . . . 6 (((0...𝑀) ∈ Fin ∧ (0...𝑅) ∈ Fin) → ((0...𝑀) × (0...𝑅)) ∈ Fin)
52, 3, 4mp2an 692 . . . . 5 ((0...𝑀) × (0...𝑅)) ∈ Fin
65a1i 11 . . . 4 (𝜑 → ((0...𝑀) × (0...𝑅)) ∈ Fin)
7 etransclem45.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
8 nnm1nn0 12564 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
109faccld 14319 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
1110nncnd 12279 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
12 etransclem45.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
1312adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝐴:ℕ0⟶ℤ)
14 xp1st 8044 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st𝑘) ∈ (0...𝑀))
15 elfznn0 13656 . . . . . . . . 9 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
1614, 15syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (1st𝑘) ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℕ0)
1813, 17ffvelcdmd 7104 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st𝑘)) ∈ ℤ)
1918zcnd 12720 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (𝐴‘(1st𝑘)) ∈ ℂ)
20 reelprrecn 11244 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2120a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈ {ℝ, ℂ})
22 reopn 45239 . . . . . . . . 9 ℝ ∈ (topGen‘ran (,))
23 eqid 2734 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423tgioo2 24838 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2522, 24eleqtri 2836 . . . . . . . 8 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2625a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
277adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑃 ∈ ℕ)
28 etransclem45.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
2928adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → 𝑀 ∈ ℕ0)
30 etransclem45.f . . . . . . 7 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 8045 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd𝑘) ∈ (0...𝑅))
32 elfznn0 13656 . . . . . . . . 9 ((2nd𝑘) ∈ (0...𝑅) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑀) × (0...𝑅)) → (2nd𝑘) ∈ ℕ0)
3433adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (2nd𝑘) ∈ ℕ0)
3521, 26, 27, 29, 30, 34etransclem33 46222 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
3617nn0red 12585 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℝ)
3735, 36ffvelcdmd 7104 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
3819, 37mulcld 11278 . . . 4 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
3910nnne0d 12313 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
406, 11, 38, 39fsumdivc 15818 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
4111adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈ ℂ)
4239adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ≠ 0)
4319, 37, 41, 42divassd 12075 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
44 etransclem5 46194 . . . . . . . 8 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
45 etransclem11 46200 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4614adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ (0...𝑀))
4721, 26, 27, 29, 30, 34, 44, 45, 46, 36etransclem37 46226 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
4810nnzd 12637 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
4948adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (!‘(𝑃 − 1)) ∈ ℤ)
5017nn0zd 12636 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (1st𝑘) ∈ ℤ)
5121, 26, 27, 29, 30, 34, 36, 50etransclem42 46231 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
52 dvdsval2 16289 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
5349, 42, 51, 52syl3anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
5447, 53mpbid 232 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
5518, 54zmulcld 12725 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
5643, 55eqeltrd 2838 . . . 4 ((𝜑𝑘 ∈ ((0...𝑀) × (0...𝑅))) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
576, 56fsumzcl 15767 . . 3 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
5840, 57eqeltrd 2838 . 2 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
591, 58eqeltrid 2842 1 (𝜑𝐾 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432  ifcif 4530  {cpr 4632   class class class wbr 5147  cmpt 5230   × cxp 5686  ran crn 5689  wf 6558  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  m cmap 8864  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  cz 12610  (,)cioo 13383  ...cfz 13543  cexp 14098  !cfa 14308  Σcsu 15718  cprod 15935  cdvds 16286  t crest 17466  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381   D𝑛 cdvn 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-prod 15936  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-dvn 25917
This theorem is referenced by:  etransclem47  46236
  Copyright terms: Public domain W3C validator