Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem29 Structured version   Visualization version   GIF version

Theorem etransclem29 42844
 Description: The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etranslemdvnf2lemlem.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem29.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem29.p (𝜑𝑃 ∈ ℕ)
etransclem29.m (𝜑𝑀 ∈ ℕ0)
etransclem29.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem29.n (𝜑𝑁 ∈ ℕ0)
etransclem29.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem29.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem29.e 𝐸 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem29 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑥,𝑛   𝜑,𝑗,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑗,𝑛)   𝑃(𝑛,𝑐)   𝐸(𝑥,𝑗,𝑛,𝑐)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem etransclem29
Dummy variables 𝑖 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etranslemdvnf2lemlem.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem29.a . . . . . 6 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
31, 2dvdmsscn 42517 . . . . 5 (𝜑𝑋 ⊆ ℂ)
4 etransclem29.p . . . . 5 (𝜑𝑃 ∈ ℕ)
5 etransclem29.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
6 etransclem29.f . . . . 5 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
7 etransclem29.h . . . . 5 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem29.e . . . . 5 𝐸 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
93, 4, 5, 6, 7, 8etransclem4 42819 . . . 4 (𝜑𝐹 = 𝐸)
109oveq2d 7156 . . 3 (𝜑 → (𝑆 D𝑛 𝐹) = (𝑆 D𝑛 𝐸))
1110fveq1d 6654 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = ((𝑆 D𝑛 𝐸)‘𝑁))
12 fzfid 13336 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
133adantr 484 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑋 ⊆ ℂ)
144adantr 484 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
15 simpr 488 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
1613, 14, 7, 15etransclem1 42816 . . 3 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗):𝑋⟶ℂ)
17 etransclem29.n . . 3 (𝜑𝑁 ∈ ℕ0)
1813ad2ant1 1130 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
1923ad2ant1 1130 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2043ad2ant1 1130 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
21 etransclem5 42820 . . . . 5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
227, 21eqtri 2845 . . . 4 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
23 simp2 1134 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑀))
24 elfznn0 12995 . . . . 5 (𝑖 ∈ (0...𝑁) → 𝑖 ∈ ℕ0)
25243ad2ant3 1132 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ ℕ0)
2618, 19, 20, 22, 23, 25etransclem20 42835 . . 3 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑗))‘𝑖):𝑋⟶ℂ)
27 etransclem29.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
281, 2, 12, 16, 17, 26, 8, 27dvnprod 42530 . 2 (𝜑 → ((𝑆 D𝑛 𝐸)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
2911, 28eqtrd 2857 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  {crab 3134   ⊆ wss 3908  ifcif 4439  {cpr 4541   ↦ cmpt 5122  ‘cfv 6334  (class class class)co 7140   ↑m cmap 8393  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   · cmul 10531   − cmin 10859   / cdiv 11286  ℕcn 11625  ℕ0cn0 11885  ...cfz 12885  ↑cexp 13425  !cfa 13629  Σcsu 15033  ∏cprod 15250   ↾t crest 16685  TopOpenctopn 16686  ℂfldccnfld 20089   D𝑛 cdvn 24465 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-prod 15251  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-dvn 24469 This theorem is referenced by:  etransclem30  42845
 Copyright terms: Public domain W3C validator