Step | Hyp | Ref
| Expression |
1 | | etransclem31.s |
. . . 4
β’ (π β π β {β, β}) |
2 | | etransclem31.x |
. . . 4
β’ (π β π β
((TopOpenββfld) βΎt π)) |
3 | | etransclem31.p |
. . . 4
β’ (π β π β β) |
4 | | etransclem31.m |
. . . 4
β’ (π β π β
β0) |
5 | | etransclem31.f |
. . . 4
β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) |
6 | | etransclem31.n |
. . . 4
β’ (π β π β
β0) |
7 | | etransclem31.h |
. . . 4
β’ π» = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) |
8 | | etransclem31.c |
. . . 4
β’ πΆ = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 44966 |
. . 3
β’ (π β ((π Dπ πΉ)βπ) = (π₯ β π β¦ Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ₯)))) |
10 | | fveq2 6888 |
. . . . . . 7
β’ (π₯ = π β (((π Dπ (π»βπ))β(πβπ))βπ₯) = (((π Dπ (π»βπ))β(πβπ))βπ)) |
11 | 10 | prodeq2ad 44294 |
. . . . . 6
β’ (π₯ = π β βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ₯) = βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ)) |
12 | 11 | oveq2d 7421 |
. . . . 5
β’ (π₯ = π β (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ₯)) = (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ))) |
13 | 12 | sumeq2sdv 15646 |
. . . 4
β’ (π₯ = π β Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ₯)) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ))) |
14 | 13 | adantl 482 |
. . 3
β’ ((π β§ π₯ = π) β Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ₯)) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ))) |
15 | | etransclem31.y |
. . 3
β’ (π β π β π) |
16 | 8, 6 | etransclem16 44952 |
. . . 4
β’ (π β (πΆβπ) β Fin) |
17 | 6 | faccld 14240 |
. . . . . . . 8
β’ (π β (!βπ) β β) |
18 | 17 | nncnd 12224 |
. . . . . . 7
β’ (π β (!βπ) β β) |
19 | 18 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (πΆβπ)) β (!βπ) β β) |
20 | | fzfid 13934 |
. . . . . . 7
β’ ((π β§ π β (πΆβπ)) β (0...π) β Fin) |
21 | | fzssnn0 44013 |
. . . . . . . . . 10
β’
(0...π) β
β0 |
22 | | ssrab2 4076 |
. . . . . . . . . . . . . 14
β’ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β ((0...π) βm (0...π)) |
23 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (πΆβπ)) β π β (πΆβπ)) |
24 | 8, 6 | etransclem12 44948 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΆβπ) = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (πΆβπ)) β (πΆβπ) = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
26 | 23, 25 | eleqtrd 2835 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (πΆβπ)) β π β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
27 | 22, 26 | sselid 3979 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (πΆβπ)) β π β ((0...π) βm (0...π))) |
28 | 27 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β ((0...π) βm (0...π))) |
29 | | elmapi 8839 |
. . . . . . . . . . . 12
β’ (π β ((0...π) βm (0...π)) β π:(0...π)βΆ(0...π)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π:(0...π)βΆ(0...π)) |
31 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β (0...π)) |
32 | 30, 31 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (πβπ) β (0...π)) |
33 | 21, 32 | sselid 3979 |
. . . . . . . . 9
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (πβπ) β
β0) |
34 | 33 | faccld 14240 |
. . . . . . . 8
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (!β(πβπ)) β β) |
35 | 34 | nncnd 12224 |
. . . . . . 7
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (!β(πβπ)) β β) |
36 | 20, 35 | fprodcl 15892 |
. . . . . 6
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)(!β(πβπ)) β β) |
37 | 34 | nnne0d 12258 |
. . . . . . 7
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (!β(πβπ)) β 0) |
38 | 20, 35, 37 | fprodn0 15919 |
. . . . . 6
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)(!β(πβπ)) β 0) |
39 | 19, 36, 38 | divcld 11986 |
. . . . 5
β’ ((π β§ π β (πΆβπ)) β ((!βπ) / βπ β (0...π)(!β(πβπ))) β β) |
40 | 1 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β {β, β}) |
41 | 2 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β
((TopOpenββfld) βΎt π)) |
42 | 3 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β β) |
43 | | etransclem5 44941 |
. . . . . . . . 9
β’ (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) = (π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π)))) |
44 | 7, 43 | eqtri 2760 |
. . . . . . . 8
β’ π» = (π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π)))) |
45 | 40, 41, 42, 44, 31, 33 | etransclem20 44956 |
. . . . . . 7
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β ((π Dπ (π»βπ))β(πβπ)):πβΆβ) |
46 | 15 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β π β π) |
47 | 45, 46 | ffvelcdmd 7084 |
. . . . . 6
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (((π Dπ (π»βπ))β(πβπ))βπ) β β) |
48 | 20, 47 | fprodcl 15892 |
. . . . 5
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ) β β) |
49 | 39, 48 | mulcld 11230 |
. . . 4
β’ ((π β§ π β (πΆβπ)) β (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ)) β β) |
50 | 16, 49 | fsumcl 15675 |
. . 3
β’ (π β Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ)) β β) |
51 | 9, 14, 15, 50 | fvmptd 7002 |
. 2
β’ (π β (((π Dπ πΉ)βπ)βπ) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ))) |
52 | 40, 41, 42, 44, 31, 33, 46 | etransclem21 44957 |
. . . . . 6
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β (((π Dπ (π»βπ))β(πβπ))βπ) = if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))))) |
53 | 52 | prodeq2dv 15863 |
. . . . 5
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ) = βπ β (0...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))))) |
54 | | nn0uz 12860 |
. . . . . . . 8
β’
β0 = (β€β₯β0) |
55 | 4, 54 | eleqtrdi 2843 |
. . . . . . 7
β’ (π β π β
(β€β₯β0)) |
56 | 55 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (πΆβπ)) β π β
(β€β₯β0)) |
57 | 52, 47 | eqeltrrd 2834 |
. . . . . 6
β’ (((π β§ π β (πΆβπ)) β§ π β (0...π)) β if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) β β) |
58 | | iftrue 4533 |
. . . . . . . 8
β’ (π = 0 β if(π = 0, (π β 1), π) = (π β 1)) |
59 | | fveq2 6888 |
. . . . . . . 8
β’ (π = 0 β (πβπ) = (πβ0)) |
60 | 58, 59 | breq12d 5160 |
. . . . . . 7
β’ (π = 0 β (if(π = 0, (π β 1), π) < (πβπ) β (π β 1) < (πβ0))) |
61 | 58 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = 0 β (!βif(π = 0, (π β 1), π)) = (!β(π β 1))) |
62 | 58, 59 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π = 0 β (if(π = 0, (π β 1), π) β (πβπ)) = ((π β 1) β (πβ0))) |
63 | 62 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = 0 β (!β(if(π = 0, (π β 1), π) β (πβπ))) = (!β((π β 1) β (πβ0)))) |
64 | 61, 63 | oveq12d 7423 |
. . . . . . . 8
β’ (π = 0 β ((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) = ((!β(π β 1)) / (!β((π β 1) β (πβ0))))) |
65 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = 0 β (π β π) = (π β 0)) |
66 | 65, 62 | oveq12d 7423 |
. . . . . . . 8
β’ (π = 0 β ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))) = ((π β 0)β((π β 1) β (πβ0)))) |
67 | 64, 66 | oveq12d 7423 |
. . . . . . 7
β’ (π = 0 β (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))) = (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0))))) |
68 | 60, 67 | ifbieq2d 4553 |
. . . . . 6
β’ (π = 0 β if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0)))))) |
69 | 56, 57, 68 | fprod1p 15908 |
. . . . 5
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0))))) Β· βπ β ((0 + 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))))) |
70 | 1, 2 | dvdmsscn 44638 |
. . . . . . . . . . . 12
β’ (π β π β β) |
71 | 70, 15 | sseldd 3982 |
. . . . . . . . . . 11
β’ (π β π β β) |
72 | 71 | subid1d 11556 |
. . . . . . . . . 10
β’ (π β (π β 0) = π) |
73 | 72 | oveq1d 7420 |
. . . . . . . . 9
β’ (π β ((π β 0)β((π β 1) β (πβ0))) = (πβ((π β 1) β (πβ0)))) |
74 | 73 | oveq2d 7421 |
. . . . . . . 8
β’ (π β (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0)))) = (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) |
75 | 74 | ifeq2d 4547 |
. . . . . . 7
β’ (π β if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0))))) = if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0)))))) |
76 | | 0p1e1 12330 |
. . . . . . . . . . 11
β’ (0 + 1) =
1 |
77 | 76 | oveq1i 7415 |
. . . . . . . . . 10
β’ ((0 +
1)...π) = (1...π) |
78 | 77 | prodeq1i 15858 |
. . . . . . . . 9
β’
βπ β ((0
+ 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = βπ β (1...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) |
79 | | 0red 11213 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β 0 β β) |
80 | | 1red 11211 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β 1 β β) |
81 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . 17
β’ (π β (1...π) β π β β€) |
82 | 81 | zred 12662 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β π β β) |
83 | | 0lt1 11732 |
. . . . . . . . . . . . . . . . 17
β’ 0 <
1 |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β 0 < 1) |
85 | | elfzle1 13500 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β 1 β€ π) |
86 | 79, 80, 82, 84, 85 | ltletrd 11370 |
. . . . . . . . . . . . . . 15
β’ (π β (1...π) β 0 < π) |
87 | 86 | gt0ne0d 11774 |
. . . . . . . . . . . . . 14
β’ (π β (1...π) β π β 0) |
88 | 87 | neneqd 2945 |
. . . . . . . . . . . . 13
β’ (π β (1...π) β Β¬ π = 0) |
89 | 88 | iffalsed 4538 |
. . . . . . . . . . . 12
β’ (π β (1...π) β if(π = 0, (π β 1), π) = π) |
90 | 89 | breq1d 5157 |
. . . . . . . . . . 11
β’ (π β (1...π) β (if(π = 0, (π β 1), π) < (πβπ) β π < (πβπ))) |
91 | 89 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β (1...π) β (!βif(π = 0, (π β 1), π)) = (!βπ)) |
92 | 89 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ (π β (1...π) β (if(π = 0, (π β 1), π) β (πβπ)) = (π β (πβπ))) |
93 | 92 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β (1...π) β (!β(if(π = 0, (π β 1), π) β (πβπ))) = (!β(π β (πβπ)))) |
94 | 91, 93 | oveq12d 7423 |
. . . . . . . . . . . 12
β’ (π β (1...π) β ((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) = ((!βπ) / (!β(π β (πβπ))))) |
95 | 92 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (π β (1...π) β ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))) = ((π β π)β(π β (πβπ)))) |
96 | 94, 95 | oveq12d 7423 |
. . . . . . . . . . 11
β’ (π β (1...π) β (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))) = (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))) |
97 | 90, 96 | ifbieq2d 4553 |
. . . . . . . . . 10
β’ (π β (1...π) β if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ)))))) |
98 | 97 | prodeq2i 15859 |
. . . . . . . . 9
β’
βπ β
(1...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))) |
99 | 78, 98 | eqtri 2760 |
. . . . . . . 8
β’
βπ β ((0
+ 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))) |
100 | 99 | a1i 11 |
. . . . . . 7
β’ (π β βπ β ((0 + 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ))))) = βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ)))))) |
101 | 75, 100 | oveq12d 7423 |
. . . . . 6
β’ (π β (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0))))) Β· βπ β ((0 + 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))))) = (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))))) |
102 | 101 | adantr 481 |
. . . . 5
β’ ((π β§ π β (πΆβπ)) β (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· ((π β 0)β((π β 1) β (πβ0))))) Β· βπ β ((0 + 1)...π)if(if(π = 0, (π β 1), π) < (πβπ), 0, (((!βif(π = 0, (π β 1), π)) / (!β(if(π = 0, (π β 1), π) β (πβπ)))) Β· ((π β π)β(if(π = 0, (π β 1), π) β (πβπ)))))) = (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))))) |
103 | 53, 69, 102 | 3eqtrd 2776 |
. . . 4
β’ ((π β§ π β (πΆβπ)) β βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ) = (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ))))))) |
104 | 103 | oveq2d 7421 |
. . 3
β’ ((π β§ π β (πΆβπ)) β (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ)) = (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ)))))))) |
105 | 104 | sumeq2dv 15645 |
. 2
β’ (π β Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ (π»βπ))β(πβπ))βπ)) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ)))))))) |
106 | 51, 105 | eqtrd 2772 |
1
β’ (π β (((π Dπ πΉ)βπ)βπ) = Ξ£π β (πΆβπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· (if((π β 1) < (πβ0), 0, (((!β(π β 1)) / (!β((π β 1) β (πβ0)))) Β· (πβ((π β 1) β (πβ0))))) Β· βπ β (1...π)if(π < (πβπ), 0, (((!βπ) / (!β(π β (πβπ)))) Β· ((π β π)β(π β (πβπ)))))))) |