Step | Hyp | Ref
| Expression |
1 | | etransclem31.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
2 | | etransclem31.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
3 | | etransclem31.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | | etransclem31.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
5 | | etransclem31.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
6 | | etransclem31.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
7 | | etransclem31.h |
. . . 4
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
8 | | etransclem31.c |
. . . 4
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 43805 |
. . 3
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) |
10 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) |
11 | 10 | prodeq2ad 43133 |
. . . . . 6
⊢ (𝑥 = 𝑌 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) |
12 | 11 | oveq2d 7291 |
. . . . 5
⊢ (𝑥 = 𝑌 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) |
13 | 12 | sumeq2sdv 15416 |
. . . 4
⊢ (𝑥 = 𝑌 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) |
14 | 13 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) |
15 | | etransclem31.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
16 | 8, 6 | etransclem16 43791 |
. . . 4
⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
17 | 6 | faccld 13998 |
. . . . . . . 8
⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
18 | 17 | nncnd 11989 |
. . . . . . 7
⊢ (𝜑 → (!‘𝑁) ∈ ℂ) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) ∈ ℂ) |
20 | | fzfid 13693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) |
21 | | fzssnn0 42856 |
. . . . . . . . . 10
⊢
(0...𝑁) ⊆
ℕ0 |
22 | | ssrab2 4013 |
. . . . . . . . . . . . . 14
⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) |
23 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) |
24 | 8, 6 | etransclem12 43787 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
26 | 23, 25 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
27 | 22, 26 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
28 | 27 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
29 | | elmapi 8637 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
31 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
32 | 30, 31 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ (0...𝑁)) |
33 | 21, 32 | sselid 3919 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈
ℕ0) |
34 | 33 | faccld 13998 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℕ) |
35 | 34 | nncnd 11989 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℂ) |
36 | 20, 35 | fprodcl 15662 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ∈ ℂ) |
37 | 34 | nnne0d 12023 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ≠ 0) |
38 | 20, 35, 37 | fprodn0 15689 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ≠ 0) |
39 | 19, 36, 38 | divcld 11751 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℂ) |
40 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
41 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
42 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
43 | | etransclem5 43780 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
44 | 7, 43 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
45 | 40, 41, 42, 44, 31, 33 | etransclem20 43795 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗)):𝑋⟶ℂ) |
46 | 15 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑌 ∈ 𝑋) |
47 | 45, 46 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) ∈ ℂ) |
48 | 20, 47 | fprodcl 15662 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) ∈ ℂ) |
49 | 39, 48 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) ∈ ℂ) |
50 | 16, 49 | fsumcl 15445 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) ∈ ℂ) |
51 | 9, 14, 15, 50 | fvmptd 6882 |
. 2
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) |
52 | 40, 41, 42, 44, 31, 33, 46 | etransclem21 43796 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) |
53 | 52 | prodeq2dv 15633 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) |
54 | | nn0uz 12620 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
55 | 4, 54 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
56 | 55 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑀 ∈
(ℤ≥‘0)) |
57 | 52, 47 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) ∈ ℂ) |
58 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) |
59 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑗 = 0 → (𝑐‘𝑗) = (𝑐‘0)) |
60 | 58, 59 | breq12d 5087 |
. . . . . . 7
⊢ (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗) ↔ (𝑃 − 1) < (𝑐‘0))) |
61 | 58 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘(𝑃 − 1))) |
62 | 58, 59 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)) = ((𝑃 − 1) − (𝑐‘0))) |
63 | 62 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = (!‘((𝑃 − 1) − (𝑐‘0)))) |
64 | 61, 63 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑗 = 0 → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0))))) |
65 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (𝑌 − 𝑗) = (𝑌 − 0)) |
66 | 65, 62 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑗 = 0 → ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) |
67 | 64, 66 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑗 = 0 → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) |
68 | 60, 67 | ifbieq2d 4485 |
. . . . . 6
⊢ (𝑗 = 0 → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))))) |
69 | 56, 57, 68 | fprod1p 15678 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))))) |
70 | 1, 2 | dvdmsscn 43477 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
71 | 70, 15 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ ℂ) |
72 | 71 | subid1d 11321 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 − 0) = 𝑌) |
73 | 72 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))) = (𝑌↑((𝑃 − 1) − (𝑐‘0)))) |
74 | 73 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) |
75 | 74 | ifeq2d 4479 |
. . . . . . 7
⊢ (𝜑 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0)))))) |
76 | | 0p1e1 12095 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
77 | 76 | oveq1i 7285 |
. . . . . . . . . 10
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
78 | 77 | prodeq1i 15628 |
. . . . . . . . 9
⊢
∏𝑗 ∈ ((0
+ 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) |
79 | | 0red 10978 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ) |
80 | | 1red 10976 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ) |
81 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ) |
82 | 81 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ) |
83 | | 0lt1 11497 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
1 |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 0 < 1) |
85 | | elfzle1 13259 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗) |
86 | 79, 80, 82, 84, 85 | ltletrd 11135 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 0 < 𝑗) |
87 | 86 | gt0ne0d 11539 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0) |
88 | 87 | neneqd 2948 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0) |
89 | 88 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃) |
90 | 89 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗) ↔ 𝑃 < (𝑐‘𝑗))) |
91 | 89 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘𝑃)) |
92 | 89 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)) = (𝑃 − (𝑐‘𝑗))) |
93 | 92 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = (!‘(𝑃 − (𝑐‘𝑗)))) |
94 | 91, 93 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗))))) |
95 | 92 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))) |
96 | 94, 95 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) |
97 | 90, 96 | ifbieq2d 4485 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑀) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) |
98 | 97 | prodeq2i 15629 |
. . . . . . . . 9
⊢
∏𝑗 ∈
(1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) |
99 | 78, 98 | eqtri 2766 |
. . . . . . . 8
⊢
∏𝑗 ∈ ((0
+ 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) |
100 | 99 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) |
101 | 75, 100 | oveq12d 7293 |
. . . . . 6
⊢ (𝜑 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) |
102 | 101 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) |
103 | 53, 69, 102 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) |
104 | 103 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
105 | 104 | sumeq2dv 15415 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
106 | 51, 105 | eqtrd 2778 |
1
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |