Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem31 Structured version   Visualization version   GIF version

Theorem etransclem31 43481
Description: The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem31.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem31.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem31.p (𝜑𝑃 ∈ ℕ)
etransclem31.m (𝜑𝑀 ∈ ℕ0)
etransclem31.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem31.n (𝜑𝑁 ∈ ℕ0)
etransclem31.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem31.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem31.y (𝜑𝑌𝑋)
Assertion
Ref Expression
etransclem31 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑥,𝑛   𝑁,𝑐,𝑗,𝑥,𝑛   𝑃,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑥,𝑛   𝑌,𝑐,𝑗,𝑥   𝜑,𝑐,𝑗,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝑋(𝑐)   𝑌(𝑛)

Proof of Theorem etransclem31
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem31.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem31.x . . . 4 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem31.p . . . 4 (𝜑𝑃 ∈ ℕ)
4 etransclem31.m . . . 4 (𝜑𝑀 ∈ ℕ0)
5 etransclem31.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem31.n . . . 4 (𝜑𝑁 ∈ ℕ0)
7 etransclem31.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem31.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 43480 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 fveq2 6717 . . . . . . 7 (𝑥 = 𝑌 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1110prodeq2ad 42808 . . . . . 6 (𝑥 = 𝑌 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1211oveq2d 7229 . . . . 5 (𝑥 = 𝑌 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1312sumeq2sdv 15268 . . . 4 (𝑥 = 𝑌 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1413adantl 485 . . 3 ((𝜑𝑥 = 𝑌) → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
15 etransclem31.y . . 3 (𝜑𝑌𝑋)
168, 6etransclem16 43466 . . . 4 (𝜑 → (𝐶𝑁) ∈ Fin)
176faccld 13850 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1817nncnd 11846 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1918adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
20 fzfid 13546 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 fzssnn0 42529 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
22 ssrab2 3993 . . . . . . . . . . . . . 14 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))
23 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
248, 6etransclem12 43462 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2524adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2623, 25eleqtrd 2840 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2722, 26sseldi 3899 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
2827adantr 484 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
29 elmapi 8530 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3028, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
31 simpr 488 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
3230, 31ffvelrnd 6905 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
3321, 32sseldi 3899 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
3433faccld 13850 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
3534nncnd 11846 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
3620, 35fprodcl 15514 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
3734nnne0d 11880 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
3820, 35, 37fprodn0 15541 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
3919, 36, 38divcld 11608 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
401ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
412ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
423ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
43 etransclem5 43455 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
447, 43eqtri 2765 . . . . . . . 8 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
4540, 41, 42, 44, 31, 33etransclem20 43470 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
4615ad2antrr 726 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑌𝑋)
4745, 46ffvelrnd 6905 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4820, 47fprodcl 15514 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4939, 48mulcld 10853 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
5016, 49fsumcl 15297 . . 3 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
519, 14, 15, 50fvmptd 6825 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
5240, 41, 42, 44, 31, 33, 46etransclem21 43471 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
5352prodeq2dv 15485 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
54 nn0uz 12476 . . . . . . . 8 0 = (ℤ‘0)
554, 54eleqtrdi 2848 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5655adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ (ℤ‘0))
5752, 47eqeltrrd 2839 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) ∈ ℂ)
58 iftrue 4445 . . . . . . . 8 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
59 fveq2 6717 . . . . . . . 8 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
6058, 59breq12d 5066 . . . . . . 7 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ (𝑃 − 1) < (𝑐‘0)))
6158fveq2d 6721 . . . . . . . . 9 (𝑗 = 0 → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘(𝑃 − 1)))
6258, 59oveq12d 7231 . . . . . . . . . 10 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = ((𝑃 − 1) − (𝑐‘0)))
6362fveq2d 6721 . . . . . . . . 9 (𝑗 = 0 → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘((𝑃 − 1) − (𝑐‘0))))
6461, 63oveq12d 7231 . . . . . . . 8 (𝑗 = 0 → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))))
65 oveq2 7221 . . . . . . . . 9 (𝑗 = 0 → (𝑌𝑗) = (𝑌 − 0))
6665, 62oveq12d 7231 . . . . . . . 8 (𝑗 = 0 → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))
6764, 66oveq12d 7231 . . . . . . 7 (𝑗 = 0 → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))))
6860, 67ifbieq2d 4465 . . . . . 6 (𝑗 = 0 → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))))
6956, 57, 68fprod1p 15530 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))))
701, 2dvdmsscn 43152 . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℂ)
7170, 15sseldd 3902 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
7271subid1d 11178 . . . . . . . . . 10 (𝜑 → (𝑌 − 0) = 𝑌)
7372oveq1d 7228 . . . . . . . . 9 (𝜑 → ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))) = (𝑌↑((𝑃 − 1) − (𝑐‘0))))
7473oveq2d 7229 . . . . . . . 8 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0)))))
7574ifeq2d 4459 . . . . . . 7 (𝜑 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))))
76 0p1e1 11952 . . . . . . . . . . 11 (0 + 1) = 1
7776oveq1i 7223 . . . . . . . . . 10 ((0 + 1)...𝑀) = (1...𝑀)
7877prodeq1i 15480 . . . . . . . . 9 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))
79 0red 10836 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
80 1red 10834 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
81 elfzelz 13112 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
8281zred 12282 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
83 0lt1 11354 . . . . . . . . . . . . . . . . 17 0 < 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 < 1)
85 elfzle1 13115 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
8679, 80, 82, 84, 85ltletrd 10992 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
8786gt0ne0d 11396 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
8887neneqd 2945 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
8988iffalsed 4450 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
9089breq1d 5063 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑗)))
9189fveq2d 6721 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘𝑃))
9289oveq1d 7228 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = (𝑃 − (𝑐𝑗)))
9392fveq2d 6721 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑗))))
9491, 93oveq12d 7231 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))))
9592oveq2d 7229 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))
9694, 95oveq12d 7231 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9790, 96ifbieq2d 4465 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
9897prodeq2i 15481 . . . . . . . . 9 𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9978, 98eqtri 2765 . . . . . . . 8 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
10099a1i 11 . . . . . . 7 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
10175, 100oveq12d 7231 . . . . . 6 (𝜑 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
102101adantr 484 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
10353, 69, 1023eqtrd 2781 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
104103oveq2d 7229 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
105104sumeq2dv 15267 . 2 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
10651, 105eqtrd 2777 1 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  ifcif 4439  {cpr 4543   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cmin 11062   / cdiv 11489  cn 11830  0cn0 12090  cuz 12438  ...cfz 13095  cexp 13635  !cfa 13839  Σcsu 15249  cprod 15467  t crest 16925  TopOpenctopn 16926  fldccnfld 20363   D𝑛 cdvn 24761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-prod 15468  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-dvn 24765
This theorem is referenced by:  etransclem35  43485  etransclem36  43486  etransclem37  43487  etransclem38  43488
  Copyright terms: Public domain W3C validator