| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | etransclem31.s | . . . 4
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | 
| 2 |  | etransclem31.x | . . . 4
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 3 |  | etransclem31.p | . . . 4
⊢ (𝜑 → 𝑃 ∈ ℕ) | 
| 4 |  | etransclem31.m | . . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 5 |  | etransclem31.f | . . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) | 
| 6 |  | etransclem31.n | . . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 7 |  | etransclem31.h | . . . 4
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | 
| 8 |  | etransclem31.c | . . . 4
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | etransclem30 46279 | . . 3
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) | 
| 10 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = 𝑌 → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) | 
| 11 | 10 | prodeq2ad 45607 | . . . . . 6
⊢ (𝑥 = 𝑌 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) | 
| 12 | 11 | oveq2d 7447 | . . . . 5
⊢ (𝑥 = 𝑌 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) | 
| 13 | 12 | sumeq2sdv 15739 | . . . 4
⊢ (𝑥 = 𝑌 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) | 
| 14 | 13 | adantl 481 | . . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) | 
| 15 |  | etransclem31.y | . . 3
⊢ (𝜑 → 𝑌 ∈ 𝑋) | 
| 16 | 8, 6 | etransclem16 46265 | . . . 4
⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | 
| 17 | 6 | faccld 14323 | . . . . . . . 8
⊢ (𝜑 → (!‘𝑁) ∈ ℕ) | 
| 18 | 17 | nncnd 12282 | . . . . . . 7
⊢ (𝜑 → (!‘𝑁) ∈ ℂ) | 
| 19 | 18 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) ∈ ℂ) | 
| 20 |  | fzfid 14014 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) | 
| 21 |  | fzssnn0 45329 | . . . . . . . . . 10
⊢
(0...𝑁) ⊆
ℕ0 | 
| 22 |  | ssrab2 4080 | . . . . . . . . . . . . . 14
⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) | 
| 23 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) | 
| 24 | 8, 6 | etransclem12 46261 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) | 
| 26 | 23, 25 | eleqtrd 2843 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) | 
| 27 | 22, 26 | sselid 3981 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) | 
| 29 |  | elmapi 8889 | . . . . . . . . . . . 12
⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) | 
| 31 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) | 
| 32 | 30, 31 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ (0...𝑁)) | 
| 33 | 21, 32 | sselid 3981 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈
ℕ0) | 
| 34 | 33 | faccld 14323 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℕ) | 
| 35 | 34 | nncnd 12282 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℂ) | 
| 36 | 20, 35 | fprodcl 15988 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ∈ ℂ) | 
| 37 | 34 | nnne0d 12316 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ≠ 0) | 
| 38 | 20, 35, 37 | fprodn0 16015 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ≠ 0) | 
| 39 | 19, 36, 38 | divcld 12043 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℂ) | 
| 40 | 1 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) | 
| 41 | 2 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 42 | 3 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) | 
| 43 |  | etransclem5 46254 | . . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | 
| 44 | 7, 43 | eqtri 2765 | . . . . . . . 8
⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | 
| 45 | 40, 41, 42, 44, 31, 33 | etransclem20 46269 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗)):𝑋⟶ℂ) | 
| 46 | 15 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑌 ∈ 𝑋) | 
| 47 | 45, 46 | ffvelcdmd 7105 | . . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) ∈ ℂ) | 
| 48 | 20, 47 | fprodcl 15988 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) ∈ ℂ) | 
| 49 | 39, 48 | mulcld 11281 | . . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) ∈ ℂ) | 
| 50 | 16, 49 | fsumcl 15769 | . . 3
⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) ∈ ℂ) | 
| 51 | 9, 14, 15, 50 | fvmptd 7023 | . 2
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌))) | 
| 52 | 40, 41, 42, 44, 31, 33, 46 | etransclem21 46270 | . . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) | 
| 53 | 52 | prodeq2dv 15958 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) | 
| 54 |  | nn0uz 12920 | . . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) | 
| 55 | 4, 54 | eleqtrdi 2851 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) | 
| 56 | 55 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑀 ∈
(ℤ≥‘0)) | 
| 57 | 52, 47 | eqeltrrd 2842 | . . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) ∈ ℂ) | 
| 58 |  | iftrue 4531 | . . . . . . . 8
⊢ (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) | 
| 59 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑗 = 0 → (𝑐‘𝑗) = (𝑐‘0)) | 
| 60 | 58, 59 | breq12d 5156 | . . . . . . 7
⊢ (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗) ↔ (𝑃 − 1) < (𝑐‘0))) | 
| 61 | 58 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑗 = 0 → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘(𝑃 − 1))) | 
| 62 | 58, 59 | oveq12d 7449 | . . . . . . . . . 10
⊢ (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)) = ((𝑃 − 1) − (𝑐‘0))) | 
| 63 | 62 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑗 = 0 → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = (!‘((𝑃 − 1) − (𝑐‘0)))) | 
| 64 | 61, 63 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑗 = 0 → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0))))) | 
| 65 |  | oveq2 7439 | . . . . . . . . 9
⊢ (𝑗 = 0 → (𝑌 − 𝑗) = (𝑌 − 0)) | 
| 66 | 65, 62 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑗 = 0 → ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) | 
| 67 | 64, 66 | oveq12d 7449 | . . . . . . 7
⊢ (𝑗 = 0 → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) | 
| 68 | 60, 67 | ifbieq2d 4552 | . . . . . 6
⊢ (𝑗 = 0 → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))))) | 
| 69 | 56, 57, 68 | fprod1p 16004 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))))) | 
| 70 | 1, 2 | dvdmsscn 45951 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ⊆ ℂ) | 
| 71 | 70, 15 | sseldd 3984 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ ℂ) | 
| 72 | 71 | subid1d 11609 | . . . . . . . . . 10
⊢ (𝜑 → (𝑌 − 0) = 𝑌) | 
| 73 | 72 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝜑 → ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))) = (𝑌↑((𝑃 − 1) − (𝑐‘0)))) | 
| 74 | 73 | oveq2d 7447 | . . . . . . . 8
⊢ (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) | 
| 75 | 74 | ifeq2d 4546 | . . . . . . 7
⊢ (𝜑 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0)))))) | 
| 76 |  | 0p1e1 12388 | . . . . . . . . . . 11
⊢ (0 + 1) =
1 | 
| 77 | 76 | oveq1i 7441 | . . . . . . . . . 10
⊢ ((0 +
1)...𝑀) = (1...𝑀) | 
| 78 | 77 | prodeq1i 15952 | . . . . . . . . 9
⊢
∏𝑗 ∈ ((0
+ 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) | 
| 79 |  | 0red 11264 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ) | 
| 80 |  | 1red 11262 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ) | 
| 81 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ) | 
| 82 | 81 | zred 12722 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ) | 
| 83 |  | 0lt1 11785 | . . . . . . . . . . . . . . . . 17
⊢ 0 <
1 | 
| 84 | 83 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 0 < 1) | 
| 85 |  | elfzle1 13567 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗) | 
| 86 | 79, 80, 82, 84, 85 | ltletrd 11421 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 0 < 𝑗) | 
| 87 | 86 | gt0ne0d 11827 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0) | 
| 88 | 87 | neneqd 2945 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0) | 
| 89 | 88 | iffalsed 4536 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃) | 
| 90 | 89 | breq1d 5153 | . . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗) ↔ 𝑃 < (𝑐‘𝑗))) | 
| 91 | 89 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘𝑃)) | 
| 92 | 89 | oveq1d 7446 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)) = (𝑃 − (𝑐‘𝑗))) | 
| 93 | 92 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = (!‘(𝑃 − (𝑐‘𝑗)))) | 
| 94 | 91, 93 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗))))) | 
| 95 | 92 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))) = ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))) | 
| 96 | 94, 95 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) | 
| 97 | 90, 96 | ifbieq2d 4552 | . . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑀) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) | 
| 98 | 97 | prodeq2i 15954 | . . . . . . . . 9
⊢
∏𝑗 ∈
(1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) | 
| 99 | 78, 98 | eqtri 2765 | . . . . . . . 8
⊢
∏𝑗 ∈ ((0
+ 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) | 
| 100 | 99 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) | 
| 101 | 75, 100 | oveq12d 7449 | . . . . . 6
⊢ (𝜑 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) | 
| 102 | 101 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐‘𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) | 
| 103 | 53, 69, 102 | 3eqtrd 2781 | . . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) | 
| 104 | 103 | oveq2d 7447 | . . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) | 
| 105 | 104 | sumeq2dv 15738 | . 2
⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑌)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) | 
| 106 | 51, 105 | eqtrd 2777 | 1
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |