Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   GIF version

Theorem etransclem4 46209
Description: 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a (𝜑𝐴 ⊆ ℂ)
etransclem4.p (𝜑𝑃 ∈ ℕ)
etransclem4.M (𝜑𝑀 ∈ ℕ0)
etransclem4.f 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem4.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem4.e 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem4 (𝜑𝐹 = 𝐸)
Distinct variable groups:   𝐴,𝑗,𝑥   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
2 etransclem4.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
3 cnex 11125 . . . . . . . . . . 11 ℂ ∈ V
43ssex 5271 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5 mptexg 7177 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
62, 4, 53syl 18 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
76adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
8 etransclem4.h . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
98fvmpt2 6961 . . . . . . . 8 ((𝑗 ∈ (0...𝑀) ∧ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
101, 7, 9syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
11 ovexd 7404 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
1210, 11fvmpt2d 6963 . . . . . 6 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312an32s 652 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1413prodeq2dv 15864 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
15 etransclem4.M . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12811 . . . . . . 7 0 = (ℤ‘0)
1715, 16eleqtrdi 2838 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
1817adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑀 ∈ (ℤ‘0))
192sselda 3943 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
2019adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
21 elfzelz 13461 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
2221zcnd 12615 . . . . . . . 8 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
2322adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2420, 23subcld 11509 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥𝑗) ∈ ℂ)
25 etransclem4.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
26 nnm1nn0 12459 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2825nnnn0d 12479 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
2927, 28ifcld 4531 . . . . . . 7 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3029ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3124, 30expcld 14087 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
32 oveq2 7377 . . . . . 6 (𝑗 = 0 → (𝑥𝑗) = (𝑥 − 0))
33 iftrue 4490 . . . . . 6 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
3432, 33oveq12d 7387 . . . . 5 (𝑗 = 0 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1)))
3518, 31, 34fprod1p 15910 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
3619subid1d 11498 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
3736oveq1d 7384 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1)))
38 0p1e1 12279 . . . . . . . . 9 (0 + 1) = 1
3938oveq1i 7379 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
4039a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
41 0red 11153 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
42 1red 11151 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
43 elfzelz 13461 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4443zred 12614 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
45 0lt1 11676 . . . . . . . . . . . . . 14 0 < 1
4645a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
47 elfzle1 13464 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
4841, 42, 44, 46, 47ltletrd 11310 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
4948gt0ne0d 11718 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
5049neneqd 2930 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
5150iffalsed 4495 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
5251oveq2d 7385 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5352adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5440, 53prodeq12rdv 15869 . . . . . 6 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5554adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5637, 55oveq12d 7387 . . . 4 ((𝜑𝑥𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5714, 35, 563eqtrrd 2769 . . 3 ((𝜑𝑥𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
5857mpteq2dva 5195 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥)))
59 etransclem4.f . 2 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
60 etransclem4.e . 2 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
6158, 59, 603eqtr4g 2789 1 (𝜑𝐹 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  cn 12162  0cn0 12418  cuz 12769  ...cfz 13444  cexp 14002  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846
This theorem is referenced by:  etransclem13  46218  etransclem29  46234
  Copyright terms: Public domain W3C validator