Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   GIF version

Theorem etransclem4 43779
Description: 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a (𝜑𝐴 ⊆ ℂ)
etransclem4.p (𝜑𝑃 ∈ ℕ)
etransclem4.M (𝜑𝑀 ∈ ℕ0)
etransclem4.f 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem4.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem4.e 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem4 (𝜑𝐹 = 𝐸)
Distinct variable groups:   𝐴,𝑗,𝑥   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 485 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
2 etransclem4.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
3 cnex 10952 . . . . . . . . . . 11 ℂ ∈ V
43ssex 5245 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5 mptexg 7097 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
62, 4, 53syl 18 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
76adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
8 etransclem4.h . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
98fvmpt2 6886 . . . . . . . 8 ((𝑗 ∈ (0...𝑀) ∧ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
101, 7, 9syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
11 ovexd 7310 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
1210, 11fvmpt2d 6888 . . . . . 6 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312an32s 649 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1413prodeq2dv 15633 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
15 etransclem4.M . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12620 . . . . . . 7 0 = (ℤ‘0)
1715, 16eleqtrdi 2849 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
1817adantr 481 . . . . 5 ((𝜑𝑥𝐴) → 𝑀 ∈ (ℤ‘0))
192sselda 3921 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
2019adantr 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
21 elfzelz 13256 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
2221zcnd 12427 . . . . . . . 8 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
2322adantl 482 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2420, 23subcld 11332 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥𝑗) ∈ ℂ)
25 etransclem4.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
26 nnm1nn0 12274 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2825nnnn0d 12293 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
2927, 28ifcld 4505 . . . . . . 7 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3029ad2antrr 723 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3124, 30expcld 13864 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
32 oveq2 7283 . . . . . 6 (𝑗 = 0 → (𝑥𝑗) = (𝑥 − 0))
33 iftrue 4465 . . . . . 6 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
3432, 33oveq12d 7293 . . . . 5 (𝑗 = 0 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1)))
3518, 31, 34fprod1p 15678 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
3619subid1d 11321 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
3736oveq1d 7290 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1)))
38 0p1e1 12095 . . . . . . . . 9 (0 + 1) = 1
3938oveq1i 7285 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
4039a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
41 0red 10978 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
42 1red 10976 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
43 elfzelz 13256 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4443zred 12426 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
45 0lt1 11497 . . . . . . . . . . . . . 14 0 < 1
4645a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
47 elfzle1 13259 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
4841, 42, 44, 46, 47ltletrd 11135 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
4948gt0ne0d 11539 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
5049neneqd 2948 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
5150iffalsed 4470 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
5251oveq2d 7291 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5352adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5440, 53prodeq12rdv 15637 . . . . . 6 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5554adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5637, 55oveq12d 7293 . . . 4 ((𝜑𝑥𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5714, 35, 563eqtrrd 2783 . . 3 ((𝜑𝑥𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
5857mpteq2dva 5174 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥)))
59 etransclem4.f . 2 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
60 etransclem4.e . 2 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
6158, 59, 603eqtr4g 2803 1 (𝜑𝐹 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  cn 11973  0cn0 12233  cuz 12582  ...cfz 13239  cexp 13782  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616
This theorem is referenced by:  etransclem13  43788  etransclem29  43804
  Copyright terms: Public domain W3C validator