Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   GIF version

Theorem etransclem4 46253
Description: 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a (𝜑𝐴 ⊆ ℂ)
etransclem4.p (𝜑𝑃 ∈ ℕ)
etransclem4.M (𝜑𝑀 ∈ ℕ0)
etransclem4.f 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem4.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem4.e 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem4 (𝜑𝐹 = 𝐸)
Distinct variable groups:   𝐴,𝑗,𝑥   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
2 etransclem4.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
3 cnex 11236 . . . . . . . . . . 11 ℂ ∈ V
43ssex 5321 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5 mptexg 7241 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
62, 4, 53syl 18 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
76adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
8 etransclem4.h . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
98fvmpt2 7027 . . . . . . . 8 ((𝑗 ∈ (0...𝑀) ∧ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
101, 7, 9syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
11 ovexd 7466 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
1210, 11fvmpt2d 7029 . . . . . 6 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312an32s 652 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1413prodeq2dv 15958 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
15 etransclem4.M . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
16 nn0uz 12920 . . . . . . 7 0 = (ℤ‘0)
1715, 16eleqtrdi 2851 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
1817adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑀 ∈ (ℤ‘0))
192sselda 3983 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
2019adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
21 elfzelz 13564 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
2221zcnd 12723 . . . . . . . 8 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
2322adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2420, 23subcld 11620 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥𝑗) ∈ ℂ)
25 etransclem4.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
26 nnm1nn0 12567 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2825nnnn0d 12587 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
2927, 28ifcld 4572 . . . . . . 7 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3029ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3124, 30expcld 14186 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
32 oveq2 7439 . . . . . 6 (𝑗 = 0 → (𝑥𝑗) = (𝑥 − 0))
33 iftrue 4531 . . . . . 6 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
3432, 33oveq12d 7449 . . . . 5 (𝑗 = 0 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1)))
3518, 31, 34fprod1p 16004 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
3619subid1d 11609 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
3736oveq1d 7446 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1)))
38 0p1e1 12388 . . . . . . . . 9 (0 + 1) = 1
3938oveq1i 7441 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
4039a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
41 0red 11264 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
42 1red 11262 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
43 elfzelz 13564 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4443zred 12722 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
45 0lt1 11785 . . . . . . . . . . . . . 14 0 < 1
4645a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
47 elfzle1 13567 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
4841, 42, 44, 46, 47ltletrd 11421 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
4948gt0ne0d 11827 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
5049neneqd 2945 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
5150iffalsed 4536 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
5251oveq2d 7447 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5352adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5440, 53prodeq12rdv 15963 . . . . . 6 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5554adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5637, 55oveq12d 7449 . . . 4 ((𝜑𝑥𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5714, 35, 563eqtrrd 2782 . . 3 ((𝜑𝑥𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
5857mpteq2dva 5242 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥)))
59 etransclem4.f . 2 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
60 etransclem4.e . 2 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
6158, 59, 603eqtr4g 2802 1 (𝜑𝐹 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  cn 12266  0cn0 12526  cuz 12878  ...cfz 13547  cexp 14102  cprod 15939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940
This theorem is referenced by:  etransclem13  46262  etransclem29  46278
  Copyright terms: Public domain W3C validator