Proof of Theorem etransclem4
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
2 | | etransclem4.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
3 | | cnex 10883 |
. . . . . . . . . . 11
⊢ ℂ
∈ V |
4 | 3 | ssex 5240 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
5 | | mptexg 7079 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
6 | 2, 4, 5 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
8 | | etransclem4.h |
. . . . . . . . 9
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
9 | 8 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑗 ∈ (0...𝑀) ∧ (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻‘𝑗) = (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
10 | 1, 7, 9 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐻‘𝑗) = (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
11 | | ovexd 7290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V) |
12 | 10, 11 | fvmpt2d 6870 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑗)‘𝑥) = ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
13 | 12 | an32s 648 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻‘𝑗)‘𝑥) = ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
14 | 13 | prodeq2dv 15561 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
15 | | etransclem4.M |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
16 | | nn0uz 12549 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
17 | 15, 16 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
18 | 17 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈
(ℤ≥‘0)) |
19 | 2 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ) |
21 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
22 | 21 | zcnd 12356 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
23 | 22 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ) |
24 | 20, 23 | subcld 11262 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 − 𝑗) ∈ ℂ) |
25 | | etransclem4.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
26 | | nnm1nn0 12204 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
28 | 25 | nnnn0d 12223 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
29 | 27, 28 | ifcld 4502 |
. . . . . . 7
⊢ (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
30 | 29 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
31 | 24, 30 | expcld 13792 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
32 | | oveq2 7263 |
. . . . . 6
⊢ (𝑗 = 0 → (𝑥 − 𝑗) = (𝑥 − 0)) |
33 | | iftrue 4462 |
. . . . . 6
⊢ (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) |
34 | 32, 33 | oveq12d 7273 |
. . . . 5
⊢ (𝑗 = 0 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1))) |
35 | 18, 31, 34 | fprod1p 15606 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
36 | 19 | subid1d 11251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 − 0) = 𝑥) |
37 | 36 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1))) |
38 | | 0p1e1 12025 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
39 | 38 | oveq1i 7265 |
. . . . . . . 8
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
40 | 39 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((0 + 1)...𝑀) = (1...𝑀)) |
41 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ) |
42 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ) |
43 | | elfzelz 13185 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ) |
44 | 43 | zred 12355 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ) |
45 | | 0lt1 11427 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
46 | 45 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 0 < 1) |
47 | | elfzle1 13188 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗) |
48 | 41, 42, 44, 46, 47 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → 0 < 𝑗) |
49 | 48 | gt0ne0d 11469 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0) |
50 | 49 | neneqd 2947 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0) |
51 | 50 | iffalsed 4467 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃) |
52 | 51 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...𝑀) → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑗)↑𝑃)) |
53 | 52 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 𝑗)↑𝑃)) |
54 | 40, 53 | prodeq12rdv 15565 |
. . . . . 6
⊢ (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃)) |
55 | 54 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃)) |
56 | 37, 55 | oveq12d 7273 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
57 | 14, 35, 56 | 3eqtrrd 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) |
58 | 57 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) = (𝑥 ∈ 𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥))) |
59 | | etransclem4.f |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
60 | | etransclem4.e |
. 2
⊢ 𝐸 = (𝑥 ∈ 𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) |
61 | 58, 59, 60 | 3eqtr4g 2804 |
1
⊢ (𝜑 → 𝐹 = 𝐸) |