Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})) |
2 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁)) |
3 | 2 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → ((0...𝑚) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀))) |
4 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁)) |
5 | 3, 4 | rabeqbidv 3410 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁}) |
6 | 5 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 = 𝑁) → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁}) |
7 | | etransclem33.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
8 | | ovex 7288 |
. . . . . . . . 9
⊢
((0...𝑁)
↑m (0...𝑀))
∈ V |
9 | 8 | rabex 5251 |
. . . . . . . 8
⊢ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ∈ V |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ∈ V) |
11 | 1, 6, 7, 10 | fvmptd 6864 |
. . . . . 6
⊢ (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁}) |
12 | | fzfi 13620 |
. . . . . . . 8
⊢
(0...𝑁) ∈
Fin |
13 | | fzfi 13620 |
. . . . . . . 8
⊢
(0...𝑀) ∈
Fin |
14 | | mapfi 9045 |
. . . . . . . 8
⊢
(((0...𝑁) ∈ Fin
∧ (0...𝑀) ∈ Fin)
→ ((0...𝑁)
↑m (0...𝑀))
∈ Fin) |
15 | 12, 13, 14 | mp2an 688 |
. . . . . . 7
⊢
((0...𝑁)
↑m (0...𝑀))
∈ Fin |
16 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) |
17 | | ssfi 8918 |
. . . . . . 7
⊢
((((0...𝑁)
↑m (0...𝑀))
∈ Fin ∧ {𝑑 ∈
((0...𝑁) ↑m
(0...𝑀)) ∣
Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))) → {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ∈ Fin) |
18 | 15, 16, 17 | mp2an 688 |
. . . . . 6
⊢ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁} ∈ Fin |
19 | 11, 18 | eqeltrdi 2847 |
. . . . 5
⊢ (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁) ∈ Fin) |
20 | 19 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁) ∈ Fin) |
21 | 7 | faccld 13926 |
. . . . . . . 8
⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
22 | 21 | nncnd 11919 |
. . . . . . 7
⊢ (𝜑 → (!‘𝑁) ∈ ℂ) |
23 | 22 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ) |
24 | 13 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin) |
25 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) |
26 | 11 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁}) |
27 | 25, 26 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑁}) |
28 | 16, 27 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
29 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
31 | 30 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ (0...𝑁)) |
32 | 31 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ (0...𝑁)) |
33 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ ((𝑐‘𝑗) ∈ (0...𝑁) → (𝑐‘𝑗) ∈
ℕ0) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈
ℕ0) |
35 | 34 | faccld 13926 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℕ) |
36 | 35 | nncnd 11919 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℂ) |
37 | 24, 36 | fprodcl 15590 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ∈ ℂ) |
38 | 35 | nnne0d 11953 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ≠ 0) |
39 | 24, 36, 38 | fprodn0 15617 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ≠ 0) |
40 | 23, 37, 39 | divcld 11681 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℂ) |
41 | | etransclem33.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
42 | 41 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ}) |
43 | | etransclem33.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
44 | 43 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
45 | | etransclem33.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
46 | 45 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ) |
47 | | etransclem5 43670 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑤 ∈ (0...𝑀) ↦ (𝑧 ∈ 𝑋 ↦ ((𝑧 − 𝑤)↑if(𝑤 = 0, (𝑃 − 1), 𝑃)))) |
48 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
49 | 42, 44, 46, 47, 48, 34 | etransclem20 43685 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗)):𝑋⟶ℂ) |
50 | | simpllr 772 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ 𝑋) |
51 | 49, 50 | ffvelrnd 6944 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥) ∈ ℂ) |
52 | 24, 51 | fprodcl 15590 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥) ∈ ℂ) |
53 | 40, 52 | mulcld 10926 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥)) ∈ ℂ) |
54 | 20, 53 | fsumcl 15373 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥)) ∈ ℂ) |
55 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥))) |
56 | 54, 55 | fmptd 6970 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥))):𝑋⟶ℂ) |
57 | | etransclem33.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
58 | | etransclem33.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
59 | | etransclem5 43670 |
. . . 4
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
60 | | etransclem11 43676 |
. . . 4
⊢ (𝑚 ∈ ℕ0
↦ {𝑑 ∈
((0...𝑚) ↑m
(0...𝑀)) ∣
Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
61 | 41, 43, 45, 57, 58, 7, 59, 60 | etransclem30 43695 |
. . 3
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) |
62 | 61 | feq1d 6569 |
. 2
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐‘𝑗))‘𝑥))):𝑋⟶ℂ)) |
63 | 56, 62 | mpbird 256 |
1
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ) |