Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. . . . . . 7
β’ (π β (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})) |
2 | | oveq2 7413 |
. . . . . . . . . 10
β’ (π = π β (0...π) = (0...π)) |
3 | 2 | oveq1d 7420 |
. . . . . . . . 9
β’ (π = π β ((0...π) βm (0...π)) = ((0...π) βm (0...π))) |
4 | | eqeq2 2744 |
. . . . . . . . 9
β’ (π = π β (Ξ£π β (0...π)(πβπ) = π β Ξ£π β (0...π)(πβπ) = π)) |
5 | 3, 4 | rabeqbidv 3449 |
. . . . . . . 8
β’ (π = π β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
6 | 5 | adantl 482 |
. . . . . . 7
β’ ((π β§ π = π) β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
7 | | etransclem33.n |
. . . . . . 7
β’ (π β π β
β0) |
8 | | ovex 7438 |
. . . . . . . . 9
β’
((0...π)
βm (0...π))
β V |
9 | 8 | rabex 5331 |
. . . . . . . 8
β’ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β V |
10 | 9 | a1i 11 |
. . . . . . 7
β’ (π β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β V) |
11 | 1, 6, 7, 10 | fvmptd 7002 |
. . . . . 6
β’ (π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ) = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
12 | | fzfi 13933 |
. . . . . . . 8
β’
(0...π) β
Fin |
13 | | fzfi 13933 |
. . . . . . . 8
β’
(0...π) β
Fin |
14 | | mapfi 9344 |
. . . . . . . 8
β’
(((0...π) β Fin
β§ (0...π) β Fin)
β ((0...π)
βm (0...π))
β Fin) |
15 | 12, 13, 14 | mp2an 690 |
. . . . . . 7
β’
((0...π)
βm (0...π))
β Fin |
16 | | ssrab2 4076 |
. . . . . . 7
β’ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β ((0...π) βm (0...π)) |
17 | | ssfi 9169 |
. . . . . . 7
β’
((((0...π)
βm (0...π))
β Fin β§ {π β
((0...π) βm
(0...π)) β£
Ξ£π β (0...π)(πβπ) = π} β ((0...π) βm (0...π))) β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β Fin) |
18 | 15, 16, 17 | mp2an 690 |
. . . . . 6
β’ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π} β Fin |
19 | 11, 18 | eqeltrdi 2841 |
. . . . 5
β’ (π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ) β Fin) |
20 | 19 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β π) β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ) β Fin) |
21 | 7 | faccld 14240 |
. . . . . . . 8
β’ (π β (!βπ) β β) |
22 | 21 | nncnd 12224 |
. . . . . . 7
β’ (π β (!βπ) β β) |
23 | 22 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β (!βπ) β β) |
24 | 13 | a1i 11 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β (0...π) β Fin) |
25 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) |
26 | 11 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ) = {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
27 | 25, 26 | eleqtrd 2835 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β π β {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
28 | 16, 27 | sselid 3979 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β π β ((0...π) βm (0...π))) |
29 | | elmapi 8839 |
. . . . . . . . . . . . 13
β’ (π β ((0...π) βm (0...π)) β π:(0...π)βΆ(0...π)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β π:(0...π)βΆ(0...π)) |
31 | 30 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’ (((π β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (πβπ) β (0...π)) |
32 | 31 | adantllr 717 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (πβπ) β (0...π)) |
33 | | elfznn0 13590 |
. . . . . . . . . 10
β’ ((πβπ) β (0...π) β (πβπ) β
β0) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (πβπ) β
β0) |
35 | 34 | faccld 14240 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (!β(πβπ)) β β) |
36 | 35 | nncnd 12224 |
. . . . . . 7
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (!β(πβπ)) β β) |
37 | 24, 36 | fprodcl 15892 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β βπ β (0...π)(!β(πβπ)) β β) |
38 | 35 | nnne0d 12258 |
. . . . . . 7
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (!β(πβπ)) β 0) |
39 | 24, 36, 38 | fprodn0 15919 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β βπ β (0...π)(!β(πβπ)) β 0) |
40 | 23, 37, 39 | divcld 11986 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β ((!βπ) / βπ β (0...π)(!β(πβπ))) β β) |
41 | | etransclem33.s |
. . . . . . . . 9
β’ (π β π β {β, β}) |
42 | 41 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β π β {β, β}) |
43 | | etransclem33.x |
. . . . . . . . 9
β’ (π β π β
((TopOpenββfld) βΎt π)) |
44 | 43 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β π β
((TopOpenββfld) βΎt π)) |
45 | | etransclem33.p |
. . . . . . . . 9
β’ (π β π β β) |
46 | 45 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β π β β) |
47 | | etransclem5 44941 |
. . . . . . . 8
β’ (π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π)))) = (π€ β (0...π) β¦ (π§ β π β¦ ((π§ β π€)βif(π€ = 0, (π β 1), π)))) |
48 | | simpr 485 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β π β (0...π)) |
49 | 42, 44, 46, 47, 48, 34 | etransclem20 44956 |
. . . . . . 7
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β ((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ)):πβΆβ) |
50 | | simpllr 774 |
. . . . . . 7
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β π₯ β π) |
51 | 49, 50 | ffvelcdmd 7084 |
. . . . . 6
β’ ((((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β§ π β (0...π)) β (((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯) β β) |
52 | 24, 51 | fprodcl 15892 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯) β β) |
53 | 40, 52 | mulcld 11230 |
. . . 4
β’ (((π β§ π₯ β π) β§ π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)) β (((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯)) β β) |
54 | 20, 53 | fsumcl 15675 |
. . 3
β’ ((π β§ π₯ β π) β Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯)) β β) |
55 | | eqid 2732 |
. . 3
β’ (π₯ β π β¦ Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯))) = (π₯ β π β¦ Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯))) |
56 | 54, 55 | fmptd 7110 |
. 2
β’ (π β (π₯ β π β¦ Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯))):πβΆβ) |
57 | | etransclem33.m |
. . . 4
β’ (π β π β
β0) |
58 | | etransclem33.f |
. . . 4
β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) |
59 | | etransclem5 44941 |
. . . 4
β’ (π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π)))) = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) |
60 | | etransclem11 44947 |
. . . 4
β’ (π β β0
β¦ {π β
((0...π) βm
(0...π)) β£
Ξ£π β (0...π)(πβπ) = π}) = (π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π}) |
61 | 41, 43, 45, 57, 58, 7, 59, 60 | etransclem30 44966 |
. . 3
β’ (π β ((π Dπ πΉ)βπ) = (π₯ β π β¦ Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯)))) |
62 | 61 | feq1d 6699 |
. 2
β’ (π β (((π Dπ πΉ)βπ):πβΆβ β (π₯ β π β¦ Ξ£π β ((π β β0 β¦ {π β ((0...π) βm (0...π)) β£ Ξ£π β (0...π)(πβπ) = π})βπ)(((!βπ) / βπ β (0...π)(!β(πβπ))) Β· βπ β (0...π)(((π Dπ ((π β (0...π) β¦ (π¦ β π β¦ ((π¦ β π)βif(π = 0, (π β 1), π))))βπ))β(πβπ))βπ₯))):πβΆβ)) |
63 | 56, 62 | mpbird 256 |
1
β’ (π β ((π Dπ πΉ)βπ):πβΆβ) |