Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem33 Structured version   Visualization version   GIF version

Theorem etransclem33 44969
Description: 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem33.s (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
etransclem33.x (πœ‘ β†’ 𝑋 ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
etransclem33.p (πœ‘ β†’ 𝑃 ∈ β„•)
etransclem33.m (πœ‘ β†’ 𝑀 ∈ β„•0)
etransclem33.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ ((π‘₯↑(𝑃 βˆ’ 1)) Β· βˆπ‘— ∈ (1...𝑀)((π‘₯ βˆ’ 𝑗)↑𝑃)))
etransclem33.n (πœ‘ β†’ 𝑁 ∈ β„•0)
Assertion
Ref Expression
etransclem33 (πœ‘ β†’ ((𝑆 D𝑛 𝐹)β€˜π‘):π‘‹βŸΆβ„‚)
Distinct variable groups:   𝑗,𝑀,π‘₯   𝑗,𝑁,π‘₯   𝑃,𝑗,π‘₯   𝑆,𝑗,π‘₯   𝑗,𝑋,π‘₯   πœ‘,𝑗,π‘₯
Allowed substitution hints:   𝐹(π‘₯,𝑗)

Proof of Theorem etransclem33
Dummy variables 𝑐 𝑑 π‘˜ π‘š 𝑛 𝑀 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2733 . . . . . . 7 (πœ‘ β†’ (π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š}) = (π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š}))
2 oveq2 7413 . . . . . . . . . 10 (π‘š = 𝑁 β†’ (0...π‘š) = (0...𝑁))
32oveq1d 7420 . . . . . . . . 9 (π‘š = 𝑁 β†’ ((0...π‘š) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀)))
4 eqeq2 2744 . . . . . . . . 9 (π‘š = 𝑁 β†’ (Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š ↔ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁))
53, 4rabeqbidv 3449 . . . . . . . 8 (π‘š = 𝑁 β†’ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁})
65adantl 482 . . . . . . 7 ((πœ‘ ∧ π‘š = 𝑁) β†’ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁})
7 etransclem33.n . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ β„•0)
8 ovex 7438 . . . . . . . . 9 ((0...𝑁) ↑m (0...𝑀)) ∈ V
98rabex 5331 . . . . . . . 8 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} ∈ V
109a1i 11 . . . . . . 7 (πœ‘ β†’ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} ∈ V)
111, 6, 7, 10fvmptd 7002 . . . . . 6 (πœ‘ β†’ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁})
12 fzfi 13933 . . . . . . . 8 (0...𝑁) ∈ Fin
13 fzfi 13933 . . . . . . . 8 (0...𝑀) ∈ Fin
14 mapfi 9344 . . . . . . . 8 (((0...𝑁) ∈ Fin ∧ (0...𝑀) ∈ Fin) β†’ ((0...𝑁) ↑m (0...𝑀)) ∈ Fin)
1512, 13, 14mp2an 690 . . . . . . 7 ((0...𝑁) ↑m (0...𝑀)) ∈ Fin
16 ssrab2 4076 . . . . . . 7 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} βŠ† ((0...𝑁) ↑m (0...𝑀))
17 ssfi 9169 . . . . . . 7 ((((0...𝑁) ↑m (0...𝑀)) ∈ Fin ∧ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} βŠ† ((0...𝑁) ↑m (0...𝑀))) β†’ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} ∈ Fin)
1815, 16, 17mp2an 690 . . . . . 6 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁} ∈ Fin
1911, 18eqeltrdi 2841 . . . . 5 (πœ‘ β†’ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘) ∈ Fin)
2019adantr 481 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘) ∈ Fin)
217faccld 14240 . . . . . . . 8 (πœ‘ β†’ (!β€˜π‘) ∈ β„•)
2221nncnd 12224 . . . . . . 7 (πœ‘ β†’ (!β€˜π‘) ∈ β„‚)
2322ad2antrr 724 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ (!β€˜π‘) ∈ β„‚)
2413a1i 11 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ (0...𝑀) ∈ Fin)
25 simpr 485 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘))
2611adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁})
2725, 26eleqtrd 2835 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ 𝑐 ∈ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = 𝑁})
2816, 27sselid 3979 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
29 elmapi 8839 . . . . . . . . . . . . 13 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) β†’ 𝑐:(0...𝑀)⟢(0...𝑁))
3028, 29syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ 𝑐:(0...𝑀)⟢(0...𝑁))
3130ffvelcdmda 7083 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (π‘β€˜π‘—) ∈ (0...𝑁))
3231adantllr 717 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (π‘β€˜π‘—) ∈ (0...𝑁))
33 elfznn0 13590 . . . . . . . . . 10 ((π‘β€˜π‘—) ∈ (0...𝑁) β†’ (π‘β€˜π‘—) ∈ β„•0)
3432, 33syl 17 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (π‘β€˜π‘—) ∈ β„•0)
3534faccld 14240 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (!β€˜(π‘β€˜π‘—)) ∈ β„•)
3635nncnd 12224 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (!β€˜(π‘β€˜π‘—)) ∈ β„‚)
3724, 36fprodcl 15892 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—)) ∈ β„‚)
3835nnne0d 12258 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (!β€˜(π‘β€˜π‘—)) β‰  0)
3924, 36, 38fprodn0 15919 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—)) β‰  0)
4023, 37, 39divcld 11986 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ ((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) ∈ β„‚)
41 etransclem33.s . . . . . . . . 9 (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
4241ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ 𝑆 ∈ {ℝ, β„‚})
43 etransclem33.x . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
4443ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ 𝑋 ∈ ((TopOpenβ€˜β„‚fld) β†Ύt 𝑆))
45 etransclem33.p . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ β„•)
4645ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ 𝑃 ∈ β„•)
47 etransclem5 44941 . . . . . . . 8 (π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃)))) = (𝑀 ∈ (0...𝑀) ↦ (𝑧 ∈ 𝑋 ↦ ((𝑧 βˆ’ 𝑀)↑if(𝑀 = 0, (𝑃 βˆ’ 1), 𝑃))))
48 simpr 485 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ 𝑗 ∈ (0...𝑀))
4942, 44, 46, 47, 48, 34etransclem20 44956 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ ((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—)):π‘‹βŸΆβ„‚)
50 simpllr 774 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ π‘₯ ∈ 𝑋)
5149, 50ffvelcdmd 7084 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) ∧ 𝑗 ∈ (0...𝑀)) β†’ (((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯) ∈ β„‚)
5224, 51fprodcl 15892 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯) ∈ β„‚)
5340, 52mulcld 11230 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ 𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)) β†’ (((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯)) ∈ β„‚)
5420, 53fsumcl 15675 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯)) ∈ β„‚)
55 eqid 2732 . . 3 (π‘₯ ∈ 𝑋 ↦ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯))) = (π‘₯ ∈ 𝑋 ↦ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯)))
5654, 55fmptd 7110 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯))):π‘‹βŸΆβ„‚)
57 etransclem33.m . . . 4 (πœ‘ β†’ 𝑀 ∈ β„•0)
58 etransclem33.f . . . 4 𝐹 = (π‘₯ ∈ 𝑋 ↦ ((π‘₯↑(𝑃 βˆ’ 1)) Β· βˆπ‘— ∈ (1...𝑀)((π‘₯ βˆ’ 𝑗)↑𝑃)))
59 etransclem5 44941 . . . 4 (π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (π‘₯ ∈ 𝑋 ↦ ((π‘₯ βˆ’ 𝑗)↑if(𝑗 = 0, (𝑃 βˆ’ 1), 𝑃))))
60 etransclem11 44947 . . . 4 (π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š}) = (𝑛 ∈ β„•0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(π‘β€˜π‘—) = 𝑛})
6141, 43, 45, 57, 58, 7, 59, 60etransclem30 44966 . . 3 (πœ‘ β†’ ((𝑆 D𝑛 𝐹)β€˜π‘) = (π‘₯ ∈ 𝑋 ↦ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯))))
6261feq1d 6699 . 2 (πœ‘ β†’ (((𝑆 D𝑛 𝐹)β€˜π‘):π‘‹βŸΆβ„‚ ↔ (π‘₯ ∈ 𝑋 ↦ Σ𝑐 ∈ ((π‘š ∈ β„•0 ↦ {𝑑 ∈ ((0...π‘š) ↑m (0...𝑀)) ∣ Ξ£π‘˜ ∈ (0...𝑀)(π‘‘β€˜π‘˜) = π‘š})β€˜π‘)(((!β€˜π‘) / βˆπ‘— ∈ (0...𝑀)(!β€˜(π‘β€˜π‘—))) Β· βˆπ‘— ∈ (0...𝑀)(((𝑆 D𝑛 ((π‘˜ ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 βˆ’ π‘˜)↑if(π‘˜ = 0, (𝑃 βˆ’ 1), 𝑃))))β€˜π‘—))β€˜(π‘β€˜π‘—))β€˜π‘₯))):π‘‹βŸΆβ„‚))
6356, 62mpbird 256 1 (πœ‘ β†’ ((𝑆 D𝑛 𝐹)β€˜π‘):π‘‹βŸΆβ„‚)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947  ifcif 4527  {cpr 4629   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111   βˆ’ cmin 11440   / cdiv 11867  β„•cn 12208  β„•0cn0 12468  ...cfz 13480  β†‘cexp 14023  !cfa 14229  Ξ£csu 15628  βˆcprod 15845   β†Ύt crest 17362  TopOpenctopn 17363  β„‚fldccnfld 20936   D𝑛 cdvn 25372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-prod 15846  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-dvn 25376
This theorem is referenced by:  etransclem39  44975  etransclem43  44979  etransclem45  44981  etransclem46  44982  etransclem47  44983
  Copyright terms: Public domain W3C validator