Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem33 Structured version   Visualization version   GIF version

Theorem etransclem33 46375
Description: 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem33.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem33.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem33.p (𝜑𝑃 ∈ ℕ)
etransclem33.m (𝜑𝑀 ∈ ℕ0)
etransclem33.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem33.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem33 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑗,𝑁,𝑥   𝑃,𝑗,𝑥   𝑆,𝑗,𝑥   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem33
Dummy variables 𝑐 𝑑 𝑘 𝑚 𝑛 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}))
2 oveq2 7354 . . . . . . . . . 10 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
32oveq1d 7361 . . . . . . . . 9 (𝑚 = 𝑁 → ((0...𝑚) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀)))
4 eqeq2 2743 . . . . . . . . 9 (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁))
53, 4rabeqbidv 3413 . . . . . . . 8 (𝑚 = 𝑁 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁})
65adantl 481 . . . . . . 7 ((𝜑𝑚 = 𝑁) → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚} = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁})
7 etransclem33.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
8 ovex 7379 . . . . . . . . 9 ((0...𝑁) ↑m (0...𝑀)) ∈ V
98rabex 5275 . . . . . . . 8 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ∈ V
109a1i 11 . . . . . . 7 (𝜑 → {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ∈ V)
111, 6, 7, 10fvmptd 6936 . . . . . 6 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁})
12 fzfi 13879 . . . . . . . 8 (0...𝑁) ∈ Fin
13 fzfi 13879 . . . . . . . 8 (0...𝑀) ∈ Fin
14 mapfi 9232 . . . . . . . 8 (((0...𝑁) ∈ Fin ∧ (0...𝑀) ∈ Fin) → ((0...𝑁) ↑m (0...𝑀)) ∈ Fin)
1512, 13, 14mp2an 692 . . . . . . 7 ((0...𝑁) ↑m (0...𝑀)) ∈ Fin
16 ssrab2 4027 . . . . . . 7 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))
17 ssfi 9082 . . . . . . 7 ((((0...𝑁) ↑m (0...𝑀)) ∈ Fin ∧ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))) → {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ∈ Fin)
1815, 16, 17mp2an 692 . . . . . 6 {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁} ∈ Fin
1911, 18eqeltrdi 2839 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
2019adantr 480 . . . 4 ((𝜑𝑥𝑋) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
217faccld 14191 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
2221nncnd 12141 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
2322ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ)
2413a1i 11 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin)
25 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁))
2611adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁})
2725, 26eleqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑑 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑁})
2816, 27sselid 3927 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
29 elmapi 8773 . . . . . . . . . . . . 13 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3130ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
3231adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
33 elfznn0 13520 . . . . . . . . . 10 ((𝑐𝑗) ∈ (0...𝑁) → (𝑐𝑗) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . 9 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
3534faccld 14191 . . . . . . . 8 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
3635nncnd 12141 . . . . . . 7 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
3724, 36fprodcl 15859 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
3835nnne0d 12175 . . . . . . 7 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
3924, 36, 38fprodn0 15886 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
4023, 37, 39divcld 11897 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
41 etransclem33.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
43 etransclem33.x . . . . . . . . 9 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
4443ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
45 etransclem33.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
4645ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
47 etransclem5 46347 . . . . . . . 8 (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑤 ∈ (0...𝑀) ↦ (𝑧𝑋 ↦ ((𝑧𝑤)↑if(𝑤 = 0, (𝑃 − 1), 𝑃))))
48 simpr 484 . . . . . . . 8 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
4942, 44, 46, 47, 48, 34etransclem20 46362 . . . . . . 7 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
50 simpllr 775 . . . . . . 7 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
5149, 50ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
5224, 51fprodcl 15859 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
5340, 52mulcld 11132 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥)) ∈ ℂ)
5420, 53fsumcl 15640 . . 3 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥)) ∈ ℂ)
55 eqid 2731 . . 3 (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥)))
5654, 55fmptd 7047 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥))):𝑋⟶ℂ)
57 etransclem33.m . . . 4 (𝜑𝑀 ∈ ℕ0)
58 etransclem33.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
59 etransclem5 46347 . . . 4 (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
60 etransclem11 46353 . . . 4 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
6141, 43, 45, 57, 58, 7, 59, 60etransclem30 46372 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥))))
6261feq1d 6633 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 ((𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))‘𝑗))‘(𝑐𝑗))‘𝑥))):𝑋⟶ℂ))
6356, 62mpbird 257 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  ifcif 4472  {cpr 4575  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  ...cfz 13407  cexp 13968  !cfa 14180  Σcsu 15593  cprod 15810  t crest 17324  TopOpenctopn 17325  fldccnfld 21291   D𝑛 cdvn 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-dvn 25796
This theorem is referenced by:  etransclem39  46381  etransclem43  46385  etransclem45  46387  etransclem46  46388  etransclem47  46389
  Copyright terms: Public domain W3C validator