Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   GIF version

Theorem infrpge 42780
Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph 𝑥𝜑
infrpge.a (𝜑𝐴 ⊆ ℝ*)
infrpge.an0 (𝜑𝐴 ≠ ∅)
infrpge.bnd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
infrpge.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
infrpge (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 n0 4277 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
32biimpi 215 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑧 𝑧𝐴)
54adantr 480 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧 𝑧𝐴)
6 nfv 1918 . . . . 5 𝑧(𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞)
7 simpr 484 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧𝐴)
8 infrpge.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝐴 ⊆ ℝ*)
10 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
119, 10sseldd 3918 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
12 pnfge 12795 . . . . . . . . . 10 (𝑧 ∈ ℝ*𝑧 ≤ +∞)
1311, 12syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ≤ +∞)
1413adantlr 711 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ +∞)
15 oveq1 7262 . . . . . . . . . . 11 (inf(𝐴, ℝ*, < ) = +∞ → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
1615adantl 481 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
17 infrpge.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
1817rpxrd 12702 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
1917rpred 12701 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
20 renemnf 10955 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ -∞)
22 xaddpnf2 12890 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2318, 21, 22syl2anc 583 . . . . . . . . . . 11 (𝜑 → (+∞ +𝑒 𝐵) = +∞)
2423adantr 480 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (+∞ +𝑒 𝐵) = +∞)
2516, 24eqtr2d 2779 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2625adantr 480 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2714, 26breqtrd 5096 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
287, 27jca 511 . . . . . 6 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
2928ex 412 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (𝑧𝐴 → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
306, 29eximd 2212 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
315, 30mpd 15 . . 3 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
32 df-rex 3069 . . 3 (∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
3331, 32sylibr 233 . 2 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
34 simpl 482 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → 𝜑)
35 infrpge.bnd . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
36 infrpge.xph . . . . . . . . . 10 𝑥𝜑
37 nfv 1918 . . . . . . . . . 10 𝑥-∞ < inf(𝐴, ℝ*, < )
38 mnfxr 10963 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
40 rexr 10952 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
41403ad2ant2 1132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ∈ ℝ*)
42 infxrcl 12996 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
438, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
44433ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
45 mnflt 12788 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
46453ad2ant2 1132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < 𝑥)
47 simp3 1136 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → ∀𝑦𝐴 𝑥𝑦)
488adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
4940adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
50 infxrgelb 12998 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ*) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5148, 49, 50syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
52513adant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5347, 52mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ≤ inf(𝐴, ℝ*, < ))
5439, 41, 44, 46, 53xrltletrd 12824 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
55543exp 1117 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < ))))
5636, 37, 55rexlimd 3245 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < )))
5735, 56mpd 15 . . . . . . . 8 (𝜑 → -∞ < inf(𝐴, ℝ*, < ))
5857adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → -∞ < inf(𝐴, ℝ*, < ))
59 neqne 2950 . . . . . . . . 9 (¬ inf(𝐴, ℝ*, < ) = +∞ → inf(𝐴, ℝ*, < ) ≠ +∞)
6059adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ≠ +∞)
6143adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6260, 61nepnfltpnf 42771 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) < +∞)
6358, 62jca 511 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞))
64 xrrebnd 12831 . . . . . . . 8 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6543, 64syl 17 . . . . . . 7 (𝜑 → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6665adantr 480 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6763, 66mpbird 256 . . . . 5 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ)
68 simpr 484 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ)
6917adantr 480 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ+)
7068, 69ltaddrpd 12734 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) + 𝐵))
7119adantr 480 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
72 rexadd 12895 . . . . . . . . 9 ((inf(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7368, 71, 72syl2anc 583 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7473eqcomd 2744 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) + 𝐵) = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7570, 74breqtrd 5096 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7643adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
7743, 18xaddcld 12964 . . . . . . . 8 (𝜑 → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
7877adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
79 xrltnle 10973 . . . . . . 7 ((inf(𝐴, ℝ*, < ) ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8076, 78, 79syl2anc 583 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8175, 80mpbid 231 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
8234, 67, 81syl2anc 583 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
83 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
84 simpl 482 . . . . . . 7 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → 𝜑)
85 infxrgelb 12998 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
868, 77, 85syl2anc 583 . . . . . . 7 (𝜑 → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8784, 86syl 17 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8883, 87mtbid 323 . . . . 5 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
89 rexnal 3165 . . . . 5 (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 ↔ ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9088, 89sylibr 233 . . . 4 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9134, 82, 90syl2anc 583 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9211adantr 480 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ∈ ℝ*)
9377ad2antrr 722 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
94 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
95 xrltnle 10973 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9692, 93, 95syl2anc 583 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9794, 96mpbird 256 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9892, 93, 97xrltled 12813 . . . . . 6 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9998ex 412 . . . . 5 ((𝜑𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10099adantlr 711 . . . 4 (((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
101100reximdva 3202 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10291, 101mpd 15 . 2 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
10333, 102pm2.61dan 809 1 (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  infcinf 9130  cr 10801   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  +crp 12659   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-rp 12660  df-xadd 12778
This theorem is referenced by:  infleinf  42801  infrpgernmpt  42895  ovnlerp  43990
  Copyright terms: Public domain W3C validator