Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   GIF version

Theorem infrpge 43834
Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph 𝑥𝜑
infrpge.a (𝜑𝐴 ⊆ ℝ*)
infrpge.an0 (𝜑𝐴 ≠ ∅)
infrpge.bnd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
infrpge.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
infrpge (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 n0 4342 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
32biimpi 215 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑧 𝑧𝐴)
54adantr 481 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧 𝑧𝐴)
6 nfv 1917 . . . . 5 𝑧(𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞)
7 simpr 485 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧𝐴)
8 infrpge.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
98adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝐴 ⊆ ℝ*)
10 simpr 485 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
119, 10sseldd 3979 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
12 pnfge 13092 . . . . . . . . . 10 (𝑧 ∈ ℝ*𝑧 ≤ +∞)
1311, 12syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ≤ +∞)
1413adantlr 713 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ +∞)
15 oveq1 7400 . . . . . . . . . . 11 (inf(𝐴, ℝ*, < ) = +∞ → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
1615adantl 482 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
17 infrpge.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
1817rpxrd 12999 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
1917rpred 12998 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
20 renemnf 11245 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ -∞)
22 xaddpnf2 13188 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2318, 21, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (+∞ +𝑒 𝐵) = +∞)
2423adantr 481 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (+∞ +𝑒 𝐵) = +∞)
2516, 24eqtr2d 2772 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2625adantr 481 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2714, 26breqtrd 5167 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
287, 27jca 512 . . . . . 6 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
2928ex 413 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (𝑧𝐴 → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
306, 29eximd 2209 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
315, 30mpd 15 . . 3 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
32 df-rex 3070 . . 3 (∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
3331, 32sylibr 233 . 2 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
34 simpl 483 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → 𝜑)
35 infrpge.bnd . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
36 infrpge.xph . . . . . . . . . 10 𝑥𝜑
37 nfv 1917 . . . . . . . . . 10 𝑥-∞ < inf(𝐴, ℝ*, < )
38 mnfxr 11253 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
40 rexr 11242 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
41403ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ∈ ℝ*)
42 infxrcl 13294 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
438, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
44433ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
45 mnflt 13085 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
46453ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < 𝑥)
47 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → ∀𝑦𝐴 𝑥𝑦)
488adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
4940adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
50 infxrgelb 13296 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ*) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
52513adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5347, 52mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ≤ inf(𝐴, ℝ*, < ))
5439, 41, 44, 46, 53xrltletrd 13122 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
55543exp 1119 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < ))))
5636, 37, 55rexlimd 3262 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < )))
5735, 56mpd 15 . . . . . . . 8 (𝜑 → -∞ < inf(𝐴, ℝ*, < ))
5857adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → -∞ < inf(𝐴, ℝ*, < ))
59 neqne 2947 . . . . . . . . 9 (¬ inf(𝐴, ℝ*, < ) = +∞ → inf(𝐴, ℝ*, < ) ≠ +∞)
6059adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ≠ +∞)
6143adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6260, 61nepnfltpnf 43825 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) < +∞)
6358, 62jca 512 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞))
64 xrrebnd 13129 . . . . . . . 8 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6543, 64syl 17 . . . . . . 7 (𝜑 → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6665adantr 481 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6763, 66mpbird 256 . . . . 5 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ)
68 simpr 485 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ)
6917adantr 481 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ+)
7068, 69ltaddrpd 13031 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) + 𝐵))
7119adantr 481 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
72 rexadd 13193 . . . . . . . . 9 ((inf(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7368, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7473eqcomd 2737 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) + 𝐵) = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7570, 74breqtrd 5167 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7643adantr 481 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
7743, 18xaddcld 13262 . . . . . . . 8 (𝜑 → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
7877adantr 481 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
79 xrltnle 11263 . . . . . . 7 ((inf(𝐴, ℝ*, < ) ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8076, 78, 79syl2anc 584 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8175, 80mpbid 231 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
8234, 67, 81syl2anc 584 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
83 simpr 485 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
84 simpl 483 . . . . . . 7 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → 𝜑)
85 infxrgelb 13296 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
868, 77, 85syl2anc 584 . . . . . . 7 (𝜑 → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8784, 86syl 17 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8883, 87mtbid 323 . . . . 5 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
89 rexnal 3099 . . . . 5 (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 ↔ ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9088, 89sylibr 233 . . . 4 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9134, 82, 90syl2anc 584 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9211adantr 481 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ∈ ℝ*)
9377ad2antrr 724 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
94 simpr 485 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
95 xrltnle 11263 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9692, 93, 95syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9794, 96mpbird 256 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9892, 93, 97xrltled 13111 . . . . . 6 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9998ex 413 . . . . 5 ((𝜑𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10099adantlr 713 . . . 4 (((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
101100reximdva 3167 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10291, 101mpd 15 . 2 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
10333, 102pm2.61dan 811 1 (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wnf 1785  wcel 2106  wne 2939  wral 3060  wrex 3069  wss 3944  c0 4318   class class class wbr 5141  (class class class)co 7393  infcinf 9418  cr 11091   + caddc 11095  +∞cpnf 11227  -∞cmnf 11228  *cxr 11229   < clt 11230  cle 11231  +crp 12956   +𝑒 cxad 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-rp 12957  df-xadd 13075
This theorem is referenced by:  infleinf  43855  infrpgernmpt  43948  ovnlerp  45051
  Copyright terms: Public domain W3C validator