Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   GIF version

Theorem infrpge 45369
Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph 𝑥𝜑
infrpge.a (𝜑𝐴 ⊆ ℝ*)
infrpge.an0 (𝜑𝐴 ≠ ∅)
infrpge.bnd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
infrpge.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
infrpge (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 n0 4301 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
32biimpi 216 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑧 𝑧𝐴)
54adantr 480 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧 𝑧𝐴)
6 nfv 1915 . . . . 5 𝑧(𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞)
7 simpr 484 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧𝐴)
8 infrpge.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝐴 ⊆ ℝ*)
10 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
119, 10sseldd 3933 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
12 pnfge 13021 . . . . . . . . . 10 (𝑧 ∈ ℝ*𝑧 ≤ +∞)
1311, 12syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ≤ +∞)
1413adantlr 715 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ +∞)
15 oveq1 7348 . . . . . . . . . . 11 (inf(𝐴, ℝ*, < ) = +∞ → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
1615adantl 481 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
17 infrpge.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
1817rpxrd 12927 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
1917rpred 12926 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
20 renemnf 11153 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ -∞)
22 xaddpnf2 13118 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2318, 21, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (+∞ +𝑒 𝐵) = +∞)
2423adantr 480 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (+∞ +𝑒 𝐵) = +∞)
2516, 24eqtr2d 2766 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2625adantr 480 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2714, 26breqtrd 5115 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
287, 27jca 511 . . . . . 6 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
2928ex 412 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (𝑧𝐴 → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
306, 29eximd 2218 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
315, 30mpd 15 . . 3 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
32 df-rex 3055 . . 3 (∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
3331, 32sylibr 234 . 2 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
34 simpl 482 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → 𝜑)
35 infrpge.bnd . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
36 infrpge.xph . . . . . . . . . 10 𝑥𝜑
37 nfv 1915 . . . . . . . . . 10 𝑥-∞ < inf(𝐴, ℝ*, < )
38 mnfxr 11161 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
40 rexr 11150 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
41403ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ∈ ℝ*)
42 infxrcl 13225 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
438, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
44433ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
45 mnflt 13014 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
46453ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < 𝑥)
47 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → ∀𝑦𝐴 𝑥𝑦)
488adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
4940adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
50 infxrgelb 13227 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ*) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
52513adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5347, 52mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ≤ inf(𝐴, ℝ*, < ))
5439, 41, 44, 46, 53xrltletrd 13052 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
55543exp 1119 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < ))))
5636, 37, 55rexlimd 3237 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < )))
5735, 56mpd 15 . . . . . . . 8 (𝜑 → -∞ < inf(𝐴, ℝ*, < ))
5857adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → -∞ < inf(𝐴, ℝ*, < ))
59 neqne 2934 . . . . . . . . 9 (¬ inf(𝐴, ℝ*, < ) = +∞ → inf(𝐴, ℝ*, < ) ≠ +∞)
6059adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ≠ +∞)
6143adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6260, 61nepnfltpnf 45360 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) < +∞)
6358, 62jca 511 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞))
64 xrrebnd 13059 . . . . . . . 8 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6543, 64syl 17 . . . . . . 7 (𝜑 → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6665adantr 480 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6763, 66mpbird 257 . . . . 5 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ)
68 simpr 484 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ)
6917adantr 480 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ+)
7068, 69ltaddrpd 12959 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) + 𝐵))
7119adantr 480 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
72 rexadd 13123 . . . . . . . . 9 ((inf(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7368, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7473eqcomd 2736 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) + 𝐵) = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7570, 74breqtrd 5115 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7643adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
7743, 18xaddcld 13192 . . . . . . . 8 (𝜑 → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
7877adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
79 xrltnle 11171 . . . . . . 7 ((inf(𝐴, ℝ*, < ) ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8076, 78, 79syl2anc 584 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8175, 80mpbid 232 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
8234, 67, 81syl2anc 584 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
83 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
84 simpl 482 . . . . . . 7 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → 𝜑)
85 infxrgelb 13227 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
868, 77, 85syl2anc 584 . . . . . . 7 (𝜑 → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8784, 86syl 17 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8883, 87mtbid 324 . . . . 5 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
89 rexnal 3082 . . . . 5 (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 ↔ ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9088, 89sylibr 234 . . . 4 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9134, 82, 90syl2anc 584 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9211adantr 480 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ∈ ℝ*)
9377ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
94 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
95 xrltnle 11171 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9692, 93, 95syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9794, 96mpbird 257 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9892, 93, 97xrltled 13041 . . . . . 6 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9998ex 412 . . . . 5 ((𝜑𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10099adantlr 715 . . . 4 (((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
101100reximdva 3143 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10291, 101mpd 15 . 2 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
10333, 102pm2.61dan 812 1 (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wnf 1784  wcel 2110  wne 2926  wral 3045  wrex 3054  wss 3900  c0 4281   class class class wbr 5089  (class class class)co 7341  infcinf 9320  cr 10997   + caddc 11001  +∞cpnf 11135  -∞cmnf 11136  *cxr 11137   < clt 11138  cle 11139  +crp 12882   +𝑒 cxad 13001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-rp 12883  df-xadd 13004
This theorem is referenced by:  infleinf  45389  infrpgernmpt  45482  ovnlerp  46579
  Copyright terms: Public domain W3C validator