Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   GIF version

Theorem infrpge 45331
Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph 𝑥𝜑
infrpge.a (𝜑𝐴 ⊆ ℝ*)
infrpge.an0 (𝜑𝐴 ≠ ∅)
infrpge.bnd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
infrpge.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
infrpge (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 n0 4306 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
32biimpi 216 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑧 𝑧𝐴)
54adantr 480 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧 𝑧𝐴)
6 nfv 1914 . . . . 5 𝑧(𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞)
7 simpr 484 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧𝐴)
8 infrpge.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝐴 ⊆ ℝ*)
10 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
119, 10sseldd 3938 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
12 pnfge 13050 . . . . . . . . . 10 (𝑧 ∈ ℝ*𝑧 ≤ +∞)
1311, 12syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ≤ +∞)
1413adantlr 715 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ +∞)
15 oveq1 7360 . . . . . . . . . . 11 (inf(𝐴, ℝ*, < ) = +∞ → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
1615adantl 481 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
17 infrpge.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
1817rpxrd 12956 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
1917rpred 12955 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
20 renemnf 11183 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ -∞)
22 xaddpnf2 13147 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2318, 21, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (+∞ +𝑒 𝐵) = +∞)
2423adantr 480 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (+∞ +𝑒 𝐵) = +∞)
2516, 24eqtr2d 2765 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2625adantr 480 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2714, 26breqtrd 5121 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
287, 27jca 511 . . . . . 6 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
2928ex 412 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (𝑧𝐴 → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
306, 29eximd 2217 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
315, 30mpd 15 . . 3 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
32 df-rex 3054 . . 3 (∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
3331, 32sylibr 234 . 2 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
34 simpl 482 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → 𝜑)
35 infrpge.bnd . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
36 infrpge.xph . . . . . . . . . 10 𝑥𝜑
37 nfv 1914 . . . . . . . . . 10 𝑥-∞ < inf(𝐴, ℝ*, < )
38 mnfxr 11191 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
40 rexr 11180 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
41403ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ∈ ℝ*)
42 infxrcl 13254 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
438, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
44433ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
45 mnflt 13043 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
46453ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < 𝑥)
47 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → ∀𝑦𝐴 𝑥𝑦)
488adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
4940adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
50 infxrgelb 13256 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ*) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
52513adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5347, 52mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ≤ inf(𝐴, ℝ*, < ))
5439, 41, 44, 46, 53xrltletrd 13081 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
55543exp 1119 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < ))))
5636, 37, 55rexlimd 3236 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < )))
5735, 56mpd 15 . . . . . . . 8 (𝜑 → -∞ < inf(𝐴, ℝ*, < ))
5857adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → -∞ < inf(𝐴, ℝ*, < ))
59 neqne 2933 . . . . . . . . 9 (¬ inf(𝐴, ℝ*, < ) = +∞ → inf(𝐴, ℝ*, < ) ≠ +∞)
6059adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ≠ +∞)
6143adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6260, 61nepnfltpnf 45322 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) < +∞)
6358, 62jca 511 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞))
64 xrrebnd 13088 . . . . . . . 8 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6543, 64syl 17 . . . . . . 7 (𝜑 → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6665adantr 480 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6763, 66mpbird 257 . . . . 5 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ)
68 simpr 484 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ)
6917adantr 480 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ+)
7068, 69ltaddrpd 12988 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) + 𝐵))
7119adantr 480 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
72 rexadd 13152 . . . . . . . . 9 ((inf(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7368, 71, 72syl2anc 584 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7473eqcomd 2735 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) + 𝐵) = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7570, 74breqtrd 5121 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7643adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
7743, 18xaddcld 13221 . . . . . . . 8 (𝜑 → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
7877adantr 480 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
79 xrltnle 11201 . . . . . . 7 ((inf(𝐴, ℝ*, < ) ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8076, 78, 79syl2anc 584 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8175, 80mpbid 232 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
8234, 67, 81syl2anc 584 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
83 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
84 simpl 482 . . . . . . 7 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → 𝜑)
85 infxrgelb 13256 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
868, 77, 85syl2anc 584 . . . . . . 7 (𝜑 → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8784, 86syl 17 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8883, 87mtbid 324 . . . . 5 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
89 rexnal 3081 . . . . 5 (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 ↔ ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9088, 89sylibr 234 . . . 4 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9134, 82, 90syl2anc 584 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9211adantr 480 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ∈ ℝ*)
9377ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
94 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
95 xrltnle 11201 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9692, 93, 95syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9794, 96mpbird 257 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9892, 93, 97xrltled 13070 . . . . . 6 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9998ex 412 . . . . 5 ((𝜑𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10099adantlr 715 . . . 4 (((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
101100reximdva 3142 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10291, 101mpd 15 . 2 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
10333, 102pm2.61dan 812 1 (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   class class class wbr 5095  (class class class)co 7353  infcinf 9350  cr 11027   + caddc 11031  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  +crp 12911   +𝑒 cxad 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-rp 12912  df-xadd 13033
This theorem is referenced by:  infleinf  45352  infrpgernmpt  45445  ovnlerp  46544
  Copyright terms: Public domain W3C validator