Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   GIF version

Theorem infrpge 40205
Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph 𝑥𝜑
infrpge.a (𝜑𝐴 ⊆ ℝ*)
infrpge.an0 (𝜑𝐴 ≠ ∅)
infrpge.bnd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
infrpge.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
infrpge (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 n0 4095 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
32biimpi 207 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑧 𝑧𝐴)
54adantr 472 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧 𝑧𝐴)
6 nfv 2009 . . . . 5 𝑧(𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞)
7 simpr 477 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧𝐴)
8 infrpge.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
98adantr 472 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝐴 ⊆ ℝ*)
10 simpr 477 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
119, 10sseldd 3762 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
12 pnfge 12164 . . . . . . . . . 10 (𝑧 ∈ ℝ*𝑧 ≤ +∞)
1311, 12syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ≤ +∞)
1413adantlr 706 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ +∞)
15 oveq1 6849 . . . . . . . . . . 11 (inf(𝐴, ℝ*, < ) = +∞ → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
1615adantl 473 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (+∞ +𝑒 𝐵))
17 infrpge.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
1817rpxrd 12071 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
1917rpred 12070 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
20 renemnf 10342 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ -∞)
22 xaddpnf2 12260 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2318, 21, 22syl2anc 579 . . . . . . . . . . 11 (𝜑 → (+∞ +𝑒 𝐵) = +∞)
2423adantr 472 . . . . . . . . . 10 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (+∞ +𝑒 𝐵) = +∞)
2516, 24eqtr2d 2800 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2625adantr 472 . . . . . . . 8 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → +∞ = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
2714, 26breqtrd 4835 . . . . . . 7 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
287, 27jca 507 . . . . . 6 (((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
2928ex 401 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (𝑧𝐴 → (𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
306, 29eximd 2249 . . . 4 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))))
315, 30mpd 15 . . 3 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
32 df-rex 3061 . . 3 (∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ∃𝑧(𝑧𝐴𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
3331, 32sylibr 225 . 2 ((𝜑 ∧ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
34 simpl 474 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → 𝜑)
35 infrpge.bnd . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
36 infrpge.xph . . . . . . . . . 10 𝑥𝜑
37 nfv 2009 . . . . . . . . . 10 𝑥-∞ < inf(𝐴, ℝ*, < )
38 mnfxr 10350 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
40 rexr 10339 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
41403ad2ant2 1164 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ∈ ℝ*)
42 infxrcl 12365 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
438, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
44433ad2ant1 1163 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
45 mnflt 12157 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
46453ad2ant2 1164 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < 𝑥)
47 simp3 1168 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → ∀𝑦𝐴 𝑥𝑦)
488adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
4940adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
50 infxrgelb 12367 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ*) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5148, 49, 50syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
52513adant3 1162 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑦𝐴 𝑥𝑦))
5347, 52mpbird 248 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → 𝑥 ≤ inf(𝐴, ℝ*, < ))
5439, 41, 44, 46, 53xrltletrd 12194 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
55543exp 1148 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < ))))
5636, 37, 55rexlimd 3173 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → -∞ < inf(𝐴, ℝ*, < )))
5735, 56mpd 15 . . . . . . . 8 (𝜑 → -∞ < inf(𝐴, ℝ*, < ))
5857adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → -∞ < inf(𝐴, ℝ*, < ))
59 neqne 2945 . . . . . . . . 9 (¬ inf(𝐴, ℝ*, < ) = +∞ → inf(𝐴, ℝ*, < ) ≠ +∞)
6059adantl 473 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ≠ +∞)
6143adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6260, 61nepnfltpnf 40196 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) < +∞)
6358, 62jca 507 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞))
64 xrrebnd 12201 . . . . . . . 8 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6543, 64syl 17 . . . . . . 7 (𝜑 → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6665adantr 472 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (inf(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) < +∞)))
6763, 66mpbird 248 . . . . 5 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → inf(𝐴, ℝ*, < ) ∈ ℝ)
68 simpr 477 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ)
6917adantr 472 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ+)
7068, 69ltaddrpd 12103 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) + 𝐵))
7119adantr 472 . . . . . . . . 9 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
72 rexadd 12265 . . . . . . . . 9 ((inf(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7368, 71, 72syl2anc 579 . . . . . . . 8 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) = (inf(𝐴, ℝ*, < ) + 𝐵))
7473eqcomd 2771 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) + 𝐵) = (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7570, 74breqtrd 4835 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
7643adantr 472 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
7743, 18xaddcld 12333 . . . . . . . 8 (𝜑 → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
7877adantr 472 . . . . . . 7 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
79 xrltnle 10359 . . . . . . 7 ((inf(𝐴, ℝ*, < ) ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8076, 78, 79syl2anc 579 . . . . . 6 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )))
8175, 80mpbid 223 . . . . 5 ((𝜑 ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
8234, 67, 81syl2anc 579 . . . 4 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
83 simpr 477 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ))
84 simpl 474 . . . . . . 7 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → 𝜑)
85 infxrgelb 12367 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
868, 77, 85syl2anc 579 . . . . . . 7 (𝜑 → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8784, 86syl 17 . . . . . 6 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ((inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
8883, 87mtbid 315 . . . . 5 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
89 rexnal 3141 . . . . 5 (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 ↔ ¬ ∀𝑧𝐴 (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9088, 89sylibr 225 . . . 4 ((𝜑 ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ inf(𝐴, ℝ*, < )) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9134, 82, 90syl2anc 579 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
9211adantr 472 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ∈ ℝ*)
9377ad2antrr 717 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*)
94 simpr 477 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧)
95 xrltnle 10359 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ∈ ℝ*) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9692, 93, 95syl2anc 579 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → (𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ↔ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧))
9794, 96mpbird 248 . . . . . . 7 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 < (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9892, 93, 97xrltled 12183 . . . . . 6 (((𝜑𝑧𝐴) ∧ ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧) → 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
9998ex 401 . . . . 5 ((𝜑𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10099adantlr 706 . . . 4 (((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) ∧ 𝑧𝐴) → (¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
101100reximdva 3163 . . 3 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → (∃𝑧𝐴 ¬ (inf(𝐴, ℝ*, < ) +𝑒 𝐵) ≤ 𝑧 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)))
10291, 101mpd 15 . 2 ((𝜑 ∧ ¬ inf(𝐴, ℝ*, < ) = +∞) → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
10333, 102pm2.61dan 847 1 (𝜑 → ∃𝑧𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wnf 1878  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  (class class class)co 6842  infcinf 8554  cr 10188   + caddc 10192  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  +crp 12028   +𝑒 cxad 12144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-rp 12029  df-xadd 12147
This theorem is referenced by:  infleinf  40226  infrpgernmpt  40332  ovnlerp  41416
  Copyright terms: Public domain W3C validator