Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rpcpnf Structured version   Visualization version   GIF version

Theorem sge0rpcpnf 46436
Description: The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rpcpnf.a (𝜑𝐴𝑉)
sge0rpcpnf.nfi (𝜑 → ¬ 𝐴 ∈ Fin)
sge0rpcpnf.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
sge0rpcpnf (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0rpcpnf
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0rpcpnf.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
21adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐴𝑉)
3 0xr 11308 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
43a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ*)
5 pnfxr 11315 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
65a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7 sge0rpcpnf.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ+)
87rpxrd 13078 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
97rpge0d 13081 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐵)
107rpred 13077 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
11 ltpnf 13162 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 < +∞)
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < +∞)
138, 6, 12xrltled 13192 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ +∞)
144, 6, 8, 9, 13eliccxrd 45540 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (0[,]+∞))
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
16 eqid 2737 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1715, 16fmptd 7134 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
1817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
192, 18sge0xrcl 46400 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
205a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ∈ ℝ*)
21 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) < +∞)
2219, 20, 21xrgtned 45333 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ≠ (Σ^‘(𝑥𝐴𝐵)))
2322necomd 2996 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ≠ +∞)
2423neneqd 2945 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞)
252, 18sge0repnf 46401 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞))
2624, 25mpbird 257 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2710adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ)
287rpne0d 13082 . . . . . . 7 (𝜑𝐵 ≠ 0)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ≠ 0)
3026, 27, 29redivcld 12095 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ)
31 arch 12523 . . . . 5 (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
3230, 31syl 17 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
33 sge0rpcpnf.nfi . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐴 ∈ Fin)
34 ishashinf 14502 . . . . . . . . . . . . 13 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3533, 34syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3635r19.21bi 3251 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
37 df-rex 3071 . . . . . . . . . . 11 (∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛 ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3836, 37sylib 218 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3938adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
40393adant3 1133 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
41 nfv 1914 . . . . . . . . 9 𝑦((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
42 simprl 771 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ 𝒫 𝐴)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) = 𝑛)
44 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑛 ∈ ℕ)
4543, 44eqeltrd 2841 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) ∈ ℕ)
46 nnnn0 12533 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (♯‘𝑦) ∈ ℕ0)
47 vex 3484 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ V)
49 hashclb 14397 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5146, 50mpbird 257 . . . . . . . . . . . . . . 15 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ Fin)
5245, 51syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑦 ∈ Fin)
5352adantrl 716 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
54533ad2antl2 1187 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
5542, 54elind 4200 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
56 simp3 1139 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
57263ad2ant1 1134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
58 nnre 12273 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
59583ad2ant2 1135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝑛 ∈ ℝ)
607adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ+)
61603ad2ant1 1134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝐵 ∈ ℝ+)
6257, 59, 61ltdivmul2d 13129 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 ↔ (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵)))
6356, 62mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6463adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6553adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
663a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
675a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
688ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ ℝ*)
699ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ≤ 𝐵)
7012ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 < +∞)
7166, 67, 68, 69, 70elicod 13437 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
7265, 71sge0fsummpt 46405 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑥𝑦 𝐵)
7310recnd 11289 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝐵 ∈ ℂ)
75 fsumconst 15826 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
7665, 74, 75syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
77 oveq1 7438 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) = 𝑛 → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7978adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
8072, 76, 793eqtrrd 2782 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8180adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
82813adantl3 1169 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8364, 82breqtrd 5169 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
8455, 83jca 511 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8584ex 412 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8641, 85eximd 2216 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8740, 86mpd 15 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
88 df-rex 3071 . . . . . . 7 (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8987, 88sylibr 234 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
90893exp 1120 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑛 ∈ ℕ → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
9190rexlimdv 3153 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
9232, 91mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
931adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
9415adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
95 elpwinss 45054 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9695adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
9793, 94, 96sge0lessmpt 46414 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)))
98 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
9914adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑦) → 𝐵 ∈ (0[,]+∞))
100 eqid 2737 . . . . . . . . . . 11 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
10199, 100fmptd 7134 . . . . . . . . . 10 (𝜑 → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
10398, 102sge0xrcl 46400 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ∈ ℝ*)
1041, 17sge0xrcl 46400 . . . . . . . . 9 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
105104adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
106103, 105xrlenltd 11327 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)) ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
10797, 106mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
108107ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
109 ralnex 3072 . . . . 5 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
110108, 109sylib 218 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
111110adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
11292, 111pm2.65da 817 . 2 (𝜑 → ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞)
113 nltpnft 13206 . . 3 ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ* → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
114104, 113syl 17 . 2 (𝜑 → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
115112, 114mpbird 257 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296   / cdiv 11920  cn 12266  0cn0 12526  +crp 13034  [,]cicc 13390  chash 14369  Σcsu 15722  Σ^csumge0 46377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-sumge0 46378
This theorem is referenced by:  hoicvrrex  46571
  Copyright terms: Public domain W3C validator