Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rpcpnf Structured version   Visualization version   GIF version

Theorem sge0rpcpnf 46377
Description: The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rpcpnf.a (𝜑𝐴𝑉)
sge0rpcpnf.nfi (𝜑 → ¬ 𝐴 ∈ Fin)
sge0rpcpnf.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
sge0rpcpnf (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0rpcpnf
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0rpcpnf.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
21adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐴𝑉)
3 0xr 11306 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
43a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ*)
5 pnfxr 11313 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
65a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7 sge0rpcpnf.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ+)
87rpxrd 13076 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
97rpge0d 13079 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐵)
107rpred 13075 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
11 ltpnf 13160 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 < +∞)
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < +∞)
138, 6, 12xrltled 13189 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ +∞)
144, 6, 8, 9, 13eliccxrd 45480 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (0[,]+∞))
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
16 eqid 2735 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1715, 16fmptd 7134 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
1817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
192, 18sge0xrcl 46341 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
205a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ∈ ℝ*)
21 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) < +∞)
2219, 20, 21xrgtned 45272 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ≠ (Σ^‘(𝑥𝐴𝐵)))
2322necomd 2994 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ≠ +∞)
2423neneqd 2943 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞)
252, 18sge0repnf 46342 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞))
2624, 25mpbird 257 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2710adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ)
287rpne0d 13080 . . . . . . 7 (𝜑𝐵 ≠ 0)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ≠ 0)
3026, 27, 29redivcld 12093 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ)
31 arch 12521 . . . . 5 (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
3230, 31syl 17 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
33 sge0rpcpnf.nfi . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐴 ∈ Fin)
34 ishashinf 14499 . . . . . . . . . . . . 13 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3533, 34syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3635r19.21bi 3249 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
37 df-rex 3069 . . . . . . . . . . 11 (∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛 ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3836, 37sylib 218 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3938adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
40393adant3 1131 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
41 nfv 1912 . . . . . . . . 9 𝑦((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
42 simprl 771 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ 𝒫 𝐴)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) = 𝑛)
44 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑛 ∈ ℕ)
4543, 44eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) ∈ ℕ)
46 nnnn0 12531 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (♯‘𝑦) ∈ ℕ0)
47 vex 3482 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ V)
49 hashclb 14394 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5146, 50mpbird 257 . . . . . . . . . . . . . . 15 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ Fin)
5245, 51syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑦 ∈ Fin)
5352adantrl 716 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
54533ad2antl2 1185 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
5542, 54elind 4210 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
56 simp3 1137 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
57263ad2ant1 1132 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
58 nnre 12271 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
59583ad2ant2 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝑛 ∈ ℝ)
607adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ+)
61603ad2ant1 1132 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝐵 ∈ ℝ+)
6257, 59, 61ltdivmul2d 13127 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 ↔ (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵)))
6356, 62mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6463adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6553adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
663a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
675a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
688ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ ℝ*)
699ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ≤ 𝐵)
7012ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 < +∞)
7166, 67, 68, 69, 70elicod 13434 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
7265, 71sge0fsummpt 46346 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑥𝑦 𝐵)
7310recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝐵 ∈ ℂ)
75 fsumconst 15823 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
7665, 74, 75syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
77 oveq1 7438 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) = 𝑛 → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7978adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
8072, 76, 793eqtrrd 2780 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8180adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
82813adantl3 1167 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8364, 82breqtrd 5174 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
8455, 83jca 511 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8584ex 412 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8641, 85eximd 2214 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8740, 86mpd 15 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
88 df-rex 3069 . . . . . . 7 (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8987, 88sylibr 234 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
90893exp 1118 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑛 ∈ ℕ → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
9190rexlimdv 3151 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
9232, 91mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
931adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
9415adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
95 elpwinss 44989 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9695adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
9793, 94, 96sge0lessmpt 46355 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)))
98 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
9914adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑦) → 𝐵 ∈ (0[,]+∞))
100 eqid 2735 . . . . . . . . . . 11 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
10199, 100fmptd 7134 . . . . . . . . . 10 (𝜑 → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
10398, 102sge0xrcl 46341 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ∈ ℝ*)
1041, 17sge0xrcl 46341 . . . . . . . . 9 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
105104adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
106103, 105xrlenltd 11325 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)) ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
10797, 106mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
108107ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
109 ralnex 3070 . . . . 5 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
110108, 109sylib 218 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
111110adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
11292, 111pm2.65da 817 . 2 (𝜑 → ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞)
113 nltpnft 13203 . . 3 ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ* → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
114104, 113syl 17 . 2 (𝜑 → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
115112, 114mpbird 257 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  +crp 13032  [,]cicc 13387  chash 14366  Σcsu 15719  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  hoicvrrex  46512
  Copyright terms: Public domain W3C validator