Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rpcpnf Structured version   Visualization version   GIF version

Theorem sge0rpcpnf 46426
Description: The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rpcpnf.a (𝜑𝐴𝑉)
sge0rpcpnf.nfi (𝜑 → ¬ 𝐴 ∈ Fin)
sge0rpcpnf.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
sge0rpcpnf (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0rpcpnf
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0rpcpnf.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
21adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐴𝑉)
3 0xr 11228 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
43a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ*)
5 pnfxr 11235 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
65a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7 sge0rpcpnf.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ+)
87rpxrd 13003 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
97rpge0d 13006 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐵)
107rpred 13002 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
11 ltpnf 13087 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 < +∞)
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < +∞)
138, 6, 12xrltled 13117 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ +∞)
144, 6, 8, 9, 13eliccxrd 45532 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (0[,]+∞))
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
16 eqid 2730 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1715, 16fmptd 7089 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
1817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
192, 18sge0xrcl 46390 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
205a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ∈ ℝ*)
21 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) < +∞)
2219, 20, 21xrgtned 45325 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ≠ (Σ^‘(𝑥𝐴𝐵)))
2322necomd 2981 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ≠ +∞)
2423neneqd 2931 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞)
252, 18sge0repnf 46391 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞))
2624, 25mpbird 257 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2710adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ)
287rpne0d 13007 . . . . . . 7 (𝜑𝐵 ≠ 0)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ≠ 0)
3026, 27, 29redivcld 12017 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ)
31 arch 12446 . . . . 5 (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
3230, 31syl 17 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
33 sge0rpcpnf.nfi . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐴 ∈ Fin)
34 ishashinf 14435 . . . . . . . . . . . . 13 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3533, 34syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3635r19.21bi 3230 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
37 df-rex 3055 . . . . . . . . . . 11 (∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛 ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3836, 37sylib 218 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3938adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
40393adant3 1132 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
41 nfv 1914 . . . . . . . . 9 𝑦((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
42 simprl 770 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ 𝒫 𝐴)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) = 𝑛)
44 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑛 ∈ ℕ)
4543, 44eqeltrd 2829 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) ∈ ℕ)
46 nnnn0 12456 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (♯‘𝑦) ∈ ℕ0)
47 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ V)
49 hashclb 14330 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5146, 50mpbird 257 . . . . . . . . . . . . . . 15 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ Fin)
5245, 51syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑦 ∈ Fin)
5352adantrl 716 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
54533ad2antl2 1187 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
5542, 54elind 4166 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
56 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
57263ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
58 nnre 12200 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
59583ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝑛 ∈ ℝ)
607adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ+)
61603ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝐵 ∈ ℝ+)
6257, 59, 61ltdivmul2d 13054 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 ↔ (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵)))
6356, 62mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6463adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6553adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
663a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
675a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
688ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ ℝ*)
699ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ≤ 𝐵)
7012ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 < +∞)
7166, 67, 68, 69, 70elicod 13363 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
7265, 71sge0fsummpt 46395 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑥𝑦 𝐵)
7310recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝐵 ∈ ℂ)
75 fsumconst 15763 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
7665, 74, 75syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
77 oveq1 7397 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) = 𝑛 → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7978adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
8072, 76, 793eqtrrd 2770 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8180adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
82813adantl3 1169 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8364, 82breqtrd 5136 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
8455, 83jca 511 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8584ex 412 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8641, 85eximd 2217 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8740, 86mpd 15 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
88 df-rex 3055 . . . . . . 7 (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8987, 88sylibr 234 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
90893exp 1119 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑛 ∈ ℕ → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
9190rexlimdv 3133 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
9232, 91mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
931adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
9415adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
95 elpwinss 45050 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9695adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
9793, 94, 96sge0lessmpt 46404 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)))
98 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
9914adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑦) → 𝐵 ∈ (0[,]+∞))
100 eqid 2730 . . . . . . . . . . 11 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
10199, 100fmptd 7089 . . . . . . . . . 10 (𝜑 → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
10398, 102sge0xrcl 46390 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ∈ ℝ*)
1041, 17sge0xrcl 46390 . . . . . . . . 9 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
105104adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
106103, 105xrlenltd 11247 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)) ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
10797, 106mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
108107ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
109 ralnex 3056 . . . . 5 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
110108, 109sylib 218 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
111110adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
11292, 111pm2.65da 816 . 2 (𝜑 → ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞)
113 nltpnft 13131 . . 3 ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ* → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
114104, 113syl 17 . 2 (𝜑 → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
115112, 114mpbird 257 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  0cn0 12449  +crp 12958  [,]cicc 13316  chash 14302  Σcsu 15659  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  hoicvrrex  46561
  Copyright terms: Public domain W3C validator