Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rpcpnf Structured version   Visualization version   GIF version

Theorem sge0rpcpnf 46518
Description: The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rpcpnf.a (𝜑𝐴𝑉)
sge0rpcpnf.nfi (𝜑 → ¬ 𝐴 ∈ Fin)
sge0rpcpnf.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
sge0rpcpnf (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0rpcpnf
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0rpcpnf.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
21adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐴𝑉)
3 0xr 11159 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
43a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ*)
5 pnfxr 11166 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
65a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7 sge0rpcpnf.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ+)
87rpxrd 12935 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
97rpge0d 12938 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐵)
107rpred 12934 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
11 ltpnf 13019 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 < +∞)
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < +∞)
138, 6, 12xrltled 13049 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ +∞)
144, 6, 8, 9, 13eliccxrd 45626 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (0[,]+∞))
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
16 eqid 2731 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1715, 16fmptd 7047 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
1817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
192, 18sge0xrcl 46482 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
205a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ∈ ℝ*)
21 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) < +∞)
2219, 20, 21xrgtned 45420 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ≠ (Σ^‘(𝑥𝐴𝐵)))
2322necomd 2983 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ≠ +∞)
2423neneqd 2933 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞)
252, 18sge0repnf 46483 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞))
2624, 25mpbird 257 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2710adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ)
287rpne0d 12939 . . . . . . 7 (𝜑𝐵 ≠ 0)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ≠ 0)
3026, 27, 29redivcld 11949 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ)
31 arch 12378 . . . . 5 (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
3230, 31syl 17 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
33 sge0rpcpnf.nfi . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐴 ∈ Fin)
34 ishashinf 14370 . . . . . . . . . . . . 13 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3533, 34syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3635r19.21bi 3224 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
37 df-rex 3057 . . . . . . . . . . 11 (∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛 ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3836, 37sylib 218 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3938adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
40393adant3 1132 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
41 nfv 1915 . . . . . . . . 9 𝑦((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
42 simprl 770 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ 𝒫 𝐴)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) = 𝑛)
44 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑛 ∈ ℕ)
4543, 44eqeltrd 2831 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) ∈ ℕ)
46 nnnn0 12388 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (♯‘𝑦) ∈ ℕ0)
47 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ V)
49 hashclb 14265 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5146, 50mpbird 257 . . . . . . . . . . . . . . 15 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ Fin)
5245, 51syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑦 ∈ Fin)
5352adantrl 716 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
54533ad2antl2 1187 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
5542, 54elind 4147 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
56 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
57263ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
58 nnre 12132 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
59583ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝑛 ∈ ℝ)
607adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ+)
61603ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝐵 ∈ ℝ+)
6257, 59, 61ltdivmul2d 12986 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 ↔ (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵)))
6356, 62mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6463adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6553adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
663a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
675a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
688ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ ℝ*)
699ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ≤ 𝐵)
7012ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 < +∞)
7166, 67, 68, 69, 70elicod 13295 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
7265, 71sge0fsummpt 46487 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑥𝑦 𝐵)
7310recnd 11140 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝐵 ∈ ℂ)
75 fsumconst 15697 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
7665, 74, 75syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
77 oveq1 7353 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) = 𝑛 → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7978adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
8072, 76, 793eqtrrd 2771 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8180adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
82813adantl3 1169 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8364, 82breqtrd 5115 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
8455, 83jca 511 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8584ex 412 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8641, 85eximd 2219 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8740, 86mpd 15 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
88 df-rex 3057 . . . . . . 7 (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8987, 88sylibr 234 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
90893exp 1119 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑛 ∈ ℕ → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
9190rexlimdv 3131 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
9232, 91mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
931adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
9415adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
95 elpwinss 45145 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9695adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
9793, 94, 96sge0lessmpt 46496 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)))
98 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
9914adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑦) → 𝐵 ∈ (0[,]+∞))
100 eqid 2731 . . . . . . . . . . 11 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
10199, 100fmptd 7047 . . . . . . . . . 10 (𝜑 → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
10398, 102sge0xrcl 46482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ∈ ℝ*)
1041, 17sge0xrcl 46482 . . . . . . . . 9 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
105104adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
106103, 105xrlenltd 11178 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)) ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
10797, 106mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
108107ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
109 ralnex 3058 . . . . 5 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
110108, 109sylib 218 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
111110adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
11292, 111pm2.65da 816 . 2 (𝜑 → ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞)
113 nltpnft 13063 . . 3 ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ* → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
114104, 113syl 17 . 2 (𝜑 → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
115112, 114mpbird 257 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  cn 12125  0cn0 12381  +crp 12890  [,]cicc 13248  chash 14237  Σcsu 15593  Σ^csumge0 46459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460
This theorem is referenced by:  hoicvrrex  46653
  Copyright terms: Public domain W3C validator