Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpcn Structured version   Visualization version   GIF version

Theorem islpcn 45560
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islpcn.s (𝜑𝑆 ⊆ ℂ)
islpcn.p (𝜑𝑃 ∈ ℂ)
Assertion
Ref Expression
islpcn (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Distinct variable groups:   𝑃,𝑒,𝑥   𝑆,𝑒,𝑥   𝜑,𝑒,𝑥

Proof of Theorem islpcn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 24825 . . . 4 (TopOpen‘ℂfld) ∈ Top
32a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
4 islpcn.s . . 3 (𝜑𝑆 ⊆ ℂ)
5 islpcn.p . . 3 (𝜑𝑃 ∈ ℂ)
6 unicntop 24827 . . . 4 ℂ = (TopOpen‘ℂfld)
76islp2 23174 . . 3 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑃 ∈ ℂ) → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
83, 4, 5, 7syl3anc 1371 . 2 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
9 cnxmet 24814 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
115adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑃 ∈ ℂ)
12 simpr 484 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
131cnfldtopn 24823 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blnei 24536 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1510, 11, 12, 14syl3anc 1371 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1615adantlr 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
17 simplr 768 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
18 ineq1 4234 . . . . . . . . . 10 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → (𝑛 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
1918neeq1d 3006 . . . . . . . . 9 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
2019rspcva 3633 . . . . . . . 8 (((𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
2116, 17, 20syl2anc 583 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
22 n0 4376 . . . . . . 7 (((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
2321, 22sylib 218 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
24 elinel2 4225 . . . . . . . . . . 11 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
2524adantl 481 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
264adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑆 ⊆ ℂ)
2724eldifad 3988 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
2827adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥𝑆)
2926, 28sseldd 4009 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ ℂ)
305adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
3129, 30abssubd 15502 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (abs‘(𝑃𝑥)))
32 eqid 2740 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 24812 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3430, 29, 33syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3531, 34eqtr4d 2783 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
3635adantlr 714 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
37 elinel1 4224 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
3837adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
399a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4011adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
41 rpxr 13066 . . . . . . . . . . . . . . 15 (𝑒 ∈ ℝ+𝑒 ∈ ℝ*)
4241ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑒 ∈ ℝ*)
43 elbl 24419 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4439, 40, 42, 43syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4538, 44mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
4645simprd 495 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) < 𝑒)
4736, 46eqbrtrd 5188 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) < 𝑒)
4825, 47jca 511 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
4948ex 412 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5049adantlr 714 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5150eximdv 1916 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5223, 51mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
53 df-rex 3077 . . . . 5 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 ↔ ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
5452, 53sylibr 234 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
5554ralrimiva 3152 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
569a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
5713neibl 24535 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ) → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5856, 5, 57syl2anc 583 . . . . . . 7 (𝜑 → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5958simplbda 499 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
6059adantlr 714 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
61 nfv 1913 . . . . . . . 8 𝑒𝜑
62 nfra1 3290 . . . . . . . 8 𝑒𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
6361, 62nfan 1898 . . . . . . 7 𝑒(𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
64 nfv 1913 . . . . . . 7 𝑒 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})
6563, 64nfan 1898 . . . . . 6 𝑒((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
66 nfv 1913 . . . . . 6 𝑒(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅
67 simp1l 1197 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝜑)
68 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝑒 ∈ ℝ+)
6967, 68jca 511 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝜑𝑒 ∈ ℝ+))
70 rspa 3254 . . . . . . . . . . 11 ((∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
7170adantll 713 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
72713adant3 1132 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
73 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
7453biimpi 216 . . . . . . . . . . . 12 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
7574ad2antlr 726 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
76 nfv 1913 . . . . . . . . . . . . . 14 𝑥(𝜑𝑒 ∈ ℝ+)
77 nfre1 3291 . . . . . . . . . . . . . 14 𝑥𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
7876, 77nfan 1898 . . . . . . . . . . . . 13 𝑥((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
79 nfv 1913 . . . . . . . . . . . . 13 𝑥(𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛
8078, 79nfan 1898 . . . . . . . . . . . 12 𝑥(((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
81 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑆 ⊆ ℂ)
83 eldifi 4154 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
8582, 84sseldd 4009 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥 ∈ ℂ)
8685adantrr 716 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ ℂ)
875adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑃 ∈ ℂ)
8887, 85, 33syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
8987, 85abssubd 15502 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (abs‘(𝑃𝑥)) = (abs‘(𝑥𝑃)))
9088, 89eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
9190adantrr 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
92 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs‘(𝑥𝑃)) < 𝑒)
9391, 92eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) < 𝑒)
9486, 93jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
9594adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
969a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9711adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑃 ∈ ℂ)
9841ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑒 ∈ ℝ*)
9996, 97, 98, 43syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
10095, 99mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
101100adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
10281, 101sseldd 4009 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥𝑛)
103 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
104102, 103elind 4223 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
105104ex 412 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
106105adantlr 714 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10780, 106eximd 2217 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10875, 107mpd 15 . . . . . . . . . 10 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
109 n0 4376 . . . . . . . . . 10 ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
110108, 109sylibr 234 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11169, 72, 73, 110syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1121113exp 1119 . . . . . . 7 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
113112adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
11465, 66, 113rexlimd 3272 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
11560, 114mpd 15 . . . 4 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
116115ralrimiva 3152 . . 3 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11755, 116impbida 800 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
1188, 117bitrd 279 1 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  ccom 5704  cfv 6573  (class class class)co 7448  cc 11182  *cxr 11323   < clt 11324  cmin 11520  +crp 13057  abscabs 15283  TopOpenctopn 17481  ∞Metcxmet 21372  ballcbl 21374  fldccnfld 21387  Topctop 22920  neicnei 23126  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-xms 24351  df-ms 24352
This theorem is referenced by:  limclner  45572
  Copyright terms: Public domain W3C validator