Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpcn Structured version   Visualization version   GIF version

Theorem islpcn 43870
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islpcn.s (𝜑𝑆 ⊆ ℂ)
islpcn.p (𝜑𝑃 ∈ ℂ)
Assertion
Ref Expression
islpcn (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Distinct variable groups:   𝑃,𝑒,𝑥   𝑆,𝑒,𝑥   𝜑,𝑒,𝑥

Proof of Theorem islpcn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 24147 . . . 4 (TopOpen‘ℂfld) ∈ Top
32a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
4 islpcn.s . . 3 (𝜑𝑆 ⊆ ℂ)
5 islpcn.p . . 3 (𝜑𝑃 ∈ ℂ)
6 unicntop 24149 . . . 4 ℂ = (TopOpen‘ℂfld)
76islp2 22496 . . 3 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑃 ∈ ℂ) → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
83, 4, 5, 7syl3anc 1371 . 2 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
9 cnxmet 24136 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
115adantr 481 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑃 ∈ ℂ)
12 simpr 485 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
131cnfldtopn 24145 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blnei 23858 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1510, 11, 12, 14syl3anc 1371 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1615adantlr 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
17 simplr 767 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
18 ineq1 4165 . . . . . . . . . 10 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → (𝑛 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
1918neeq1d 3003 . . . . . . . . 9 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
2019rspcva 3579 . . . . . . . 8 (((𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
2116, 17, 20syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
22 n0 4306 . . . . . . 7 (((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
2321, 22sylib 217 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
24 elinel2 4156 . . . . . . . . . . 11 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
2524adantl 482 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
264adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑆 ⊆ ℂ)
2724eldifad 3922 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
2827adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥𝑆)
2926, 28sseldd 3945 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ ℂ)
305adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
3129, 30abssubd 15338 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (abs‘(𝑃𝑥)))
32 eqid 2736 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 24134 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3430, 29, 33syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3531, 34eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
3635adantlr 713 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
37 elinel1 4155 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
3837adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
399a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4011adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
41 rpxr 12924 . . . . . . . . . . . . . . 15 (𝑒 ∈ ℝ+𝑒 ∈ ℝ*)
4241ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑒 ∈ ℝ*)
43 elbl 23741 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4439, 40, 42, 43syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4538, 44mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
4645simprd 496 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) < 𝑒)
4736, 46eqbrtrd 5127 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) < 𝑒)
4825, 47jca 512 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
4948ex 413 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5049adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5150eximdv 1920 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5223, 51mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
53 df-rex 3074 . . . . 5 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 ↔ ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
5452, 53sylibr 233 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
5554ralrimiva 3143 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
569a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
5713neibl 23857 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ) → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5856, 5, 57syl2anc 584 . . . . . . 7 (𝜑 → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5958simplbda 500 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
6059adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
61 nfv 1917 . . . . . . . 8 𝑒𝜑
62 nfra1 3267 . . . . . . . 8 𝑒𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
6361, 62nfan 1902 . . . . . . 7 𝑒(𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
64 nfv 1917 . . . . . . 7 𝑒 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})
6563, 64nfan 1902 . . . . . 6 𝑒((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
66 nfv 1917 . . . . . 6 𝑒(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅
67 simp1l 1197 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝜑)
68 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝑒 ∈ ℝ+)
6967, 68jca 512 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝜑𝑒 ∈ ℝ+))
70 rspa 3231 . . . . . . . . . . 11 ((∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
7170adantll 712 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
72713adant3 1132 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
73 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
7453biimpi 215 . . . . . . . . . . . 12 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
7574ad2antlr 725 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
76 nfv 1917 . . . . . . . . . . . . . 14 𝑥(𝜑𝑒 ∈ ℝ+)
77 nfre1 3268 . . . . . . . . . . . . . 14 𝑥𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
7876, 77nfan 1902 . . . . . . . . . . . . 13 𝑥((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
79 nfv 1917 . . . . . . . . . . . . 13 𝑥(𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛
8078, 79nfan 1902 . . . . . . . . . . . 12 𝑥(((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
81 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
824adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑆 ⊆ ℂ)
83 eldifi 4086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
8582, 84sseldd 3945 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥 ∈ ℂ)
8685adantrr 715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ ℂ)
875adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑃 ∈ ℂ)
8887, 85, 33syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
8987, 85abssubd 15338 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (abs‘(𝑃𝑥)) = (abs‘(𝑥𝑃)))
9088, 89eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
9190adantrr 715 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
92 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs‘(𝑥𝑃)) < 𝑒)
9391, 92eqbrtrd 5127 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) < 𝑒)
9486, 93jca 512 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
9594adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
969a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9711adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑃 ∈ ℂ)
9841ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑒 ∈ ℝ*)
9996, 97, 98, 43syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
10095, 99mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
101100adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
10281, 101sseldd 3945 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥𝑛)
103 simprl 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
104102, 103elind 4154 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
105104ex 413 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
106105adantlr 713 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10780, 106eximd 2209 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10875, 107mpd 15 . . . . . . . . . 10 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
109 n0 4306 . . . . . . . . . 10 ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
110108, 109sylibr 233 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11169, 72, 73, 110syl21anc 836 . . . . . . . 8 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1121113exp 1119 . . . . . . 7 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
113112adantr 481 . . . . . 6 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
11465, 66, 113rexlimd 3249 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
11560, 114mpd 15 . . . 4 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
116115ralrimiva 3143 . . 3 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11755, 116impbida 799 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
1188, 117bitrd 278 1 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  ccom 5637  cfv 6496  (class class class)co 7357  cc 11049  *cxr 11188   < clt 11189  cmin 11385  +crp 12915  abscabs 15119  TopOpenctopn 17303  ∞Metcxmet 20781  ballcbl 20783  fldccnfld 20796  Topctop 22242  neicnei 22448  limPtclp 22485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-xms 23673  df-ms 23674
This theorem is referenced by:  limclner  43882
  Copyright terms: Public domain W3C validator