Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpcn Structured version   Visualization version   GIF version

Theorem islpcn 45761
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islpcn.s (𝜑𝑆 ⊆ ℂ)
islpcn.p (𝜑𝑃 ∈ ℂ)
Assertion
Ref Expression
islpcn (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Distinct variable groups:   𝑃,𝑒,𝑥   𝑆,𝑒,𝑥   𝜑,𝑒,𝑥

Proof of Theorem islpcn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 24699 . . . 4 (TopOpen‘ℂfld) ∈ Top
32a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
4 islpcn.s . . 3 (𝜑𝑆 ⊆ ℂ)
5 islpcn.p . . 3 (𝜑𝑃 ∈ ℂ)
6 unicntop 24701 . . . 4 ℂ = (TopOpen‘ℂfld)
76islp2 23061 . . 3 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑃 ∈ ℂ) → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
83, 4, 5, 7syl3anc 1373 . 2 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
9 cnxmet 24688 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
115adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑃 ∈ ℂ)
12 simpr 484 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
131cnfldtopn 24697 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blnei 24418 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1510, 11, 12, 14syl3anc 1373 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1615adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
17 simplr 768 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
18 ineq1 4162 . . . . . . . . . 10 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → (𝑛 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
1918neeq1d 2988 . . . . . . . . 9 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
2019rspcva 3571 . . . . . . . 8 (((𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
2116, 17, 20syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
22 n0 4302 . . . . . . 7 (((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
2321, 22sylib 218 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
24 elinel2 4151 . . . . . . . . . . 11 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
2524adantl 481 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
264adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑆 ⊆ ℂ)
2724eldifad 3910 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
2827adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥𝑆)
2926, 28sseldd 3931 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ ℂ)
305adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
3129, 30abssubd 15365 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (abs‘(𝑃𝑥)))
32 eqid 2733 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 24686 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3430, 29, 33syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3531, 34eqtr4d 2771 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
3635adantlr 715 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
37 elinel1 4150 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
3837adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
399a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4011adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
41 rpxr 12902 . . . . . . . . . . . . . . 15 (𝑒 ∈ ℝ+𝑒 ∈ ℝ*)
4241ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑒 ∈ ℝ*)
43 elbl 24304 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4439, 40, 42, 43syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4538, 44mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
4645simprd 495 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) < 𝑒)
4736, 46eqbrtrd 5115 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) < 𝑒)
4825, 47jca 511 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
4948ex 412 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5049adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5150eximdv 1918 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5223, 51mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
53 df-rex 3058 . . . . 5 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 ↔ ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
5452, 53sylibr 234 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
5554ralrimiva 3125 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
569a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
5713neibl 24417 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ) → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5856, 5, 57syl2anc 584 . . . . . . 7 (𝜑 → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5958simplbda 499 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
6059adantlr 715 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
61 nfv 1915 . . . . . . . 8 𝑒𝜑
62 nfra1 3257 . . . . . . . 8 𝑒𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
6361, 62nfan 1900 . . . . . . 7 𝑒(𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
64 nfv 1915 . . . . . . 7 𝑒 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})
6563, 64nfan 1900 . . . . . 6 𝑒((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
66 nfv 1915 . . . . . 6 𝑒(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅
67 simp1l 1198 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝜑)
68 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝑒 ∈ ℝ+)
6967, 68jca 511 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝜑𝑒 ∈ ℝ+))
70 rspa 3222 . . . . . . . . . . 11 ((∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
7170adantll 714 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
72713adant3 1132 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
73 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
7453biimpi 216 . . . . . . . . . . . 12 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
7574ad2antlr 727 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
76 nfv 1915 . . . . . . . . . . . . . 14 𝑥(𝜑𝑒 ∈ ℝ+)
77 nfre1 3258 . . . . . . . . . . . . . 14 𝑥𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
7876, 77nfan 1900 . . . . . . . . . . . . 13 𝑥((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
79 nfv 1915 . . . . . . . . . . . . 13 𝑥(𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛
8078, 79nfan 1900 . . . . . . . . . . . 12 𝑥(((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
81 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑆 ⊆ ℂ)
83 eldifi 4080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
8582, 84sseldd 3931 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥 ∈ ℂ)
8685adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ ℂ)
875adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑃 ∈ ℂ)
8887, 85, 33syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
8987, 85abssubd 15365 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (abs‘(𝑃𝑥)) = (abs‘(𝑥𝑃)))
9088, 89eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
9190adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
92 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs‘(𝑥𝑃)) < 𝑒)
9391, 92eqbrtrd 5115 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) < 𝑒)
9486, 93jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
9594adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
969a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9711adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑃 ∈ ℂ)
9841ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑒 ∈ ℝ*)
9996, 97, 98, 43syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
10095, 99mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
101100adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
10281, 101sseldd 3931 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥𝑛)
103 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
104102, 103elind 4149 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
105104ex 412 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
106105adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10780, 106eximd 2221 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10875, 107mpd 15 . . . . . . . . . 10 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
109 n0 4302 . . . . . . . . . 10 ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
110108, 109sylibr 234 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11169, 72, 73, 110syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1121113exp 1119 . . . . . . 7 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
113112adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
11465, 66, 113rexlimd 3240 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
11560, 114mpd 15 . . . 4 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
116115ralrimiva 3125 . . 3 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11755, 116impbida 800 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
1188, 117bitrd 279 1 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  cin 3897  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  ccom 5623  cfv 6486  (class class class)co 7352  cc 11011  *cxr 11152   < clt 11153  cmin 11351  +crp 12892  abscabs 15143  TopOpenctopn 17327  ∞Metcxmet 21278  ballcbl 21280  fldccnfld 21293  Topctop 22809  neicnei 23013  limPtclp 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-xms 24236  df-ms 24237
This theorem is referenced by:  limclner  45773
  Copyright terms: Public domain W3C validator