Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . . 5
β’
(TopOpenββfld) =
(TopOpenββfld) |
2 | 1 | cnfldtop 24292 |
. . . 4
β’
(TopOpenββfld) β Top |
3 | 2 | a1i 11 |
. . 3
β’ (π β
(TopOpenββfld) β Top) |
4 | | islpcn.s |
. . 3
β’ (π β π β β) |
5 | | islpcn.p |
. . 3
β’ (π β π β β) |
6 | | unicntop 24294 |
. . . 4
β’ β =
βͺ
(TopOpenββfld) |
7 | 6 | islp2 22641 |
. . 3
β’
(((TopOpenββfld) β Top β§ π β β β§ π β β) β (π β
((limPtβ(TopOpenββfld))βπ) β βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
)) |
8 | 3, 4, 5, 7 | syl3anc 1372 |
. 2
β’ (π β (π β
((limPtβ(TopOpenββfld))βπ) β βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
)) |
9 | | cnxmet 24281 |
. . . . . . . . . . 11
β’ (abs
β β ) β (βMetββ) |
10 | 9 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π β β+) β (abs
β β ) β (βMetββ)) |
11 | 5 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β β+) β π β
β) |
12 | | simpr 486 |
. . . . . . . . . 10
β’ ((π β§ π β β+) β π β
β+) |
13 | 1 | cnfldtopn 24290 |
. . . . . . . . . . 11
β’
(TopOpenββfld) = (MetOpenβ(abs β
β )) |
14 | 13 | blnei 24003 |
. . . . . . . . . 10
β’ (((abs
β β ) β (βMetββ) β§ π β β β§ π β β+) β (π(ballβ(abs β β
))π) β
((neiβ(TopOpenββfld))β{π})) |
15 | 10, 11, 12, 14 | syl3anc 1372 |
. . . . . . . . 9
β’ ((π β§ π β β+) β (π(ballβ(abs β β
))π) β
((neiβ(TopOpenββfld))β{π})) |
16 | 15 | adantlr 714 |
. . . . . . . 8
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β (π(ballβ(abs β β
))π) β
((neiβ(TopOpenββfld))β{π})) |
17 | | simplr 768 |
. . . . . . . 8
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β
βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) |
18 | | ineq1 4205 |
. . . . . . . . . 10
β’ (π = (π(ballβ(abs β β ))π) β (π β© (π β {π})) = ((π(ballβ(abs β β ))π) β© (π β {π}))) |
19 | 18 | neeq1d 3001 |
. . . . . . . . 9
β’ (π = (π(ballβ(abs β β ))π) β ((π β© (π β {π})) β β
β ((π(ballβ(abs β β ))π) β© (π β {π})) β β
)) |
20 | 19 | rspcva 3611 |
. . . . . . . 8
β’ (((π(ballβ(abs β β
))π) β
((neiβ(TopOpenββfld))β{π}) β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β ((π(ballβ(abs β β ))π) β© (π β {π})) β β
) |
21 | 16, 17, 20 | syl2anc 585 |
. . . . . . 7
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β ((π(ballβ(abs β β
))π) β© (π β {π})) β β
) |
22 | | n0 4346 |
. . . . . . 7
β’ (((π(ballβ(abs β β
))π) β© (π β {π})) β β
β βπ₯ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) |
23 | 21, 22 | sylib 217 |
. . . . . 6
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β
βπ₯ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) |
24 | | elinel2 4196 |
. . . . . . . . . . 11
β’ (π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β π₯ β (π β {π})) |
25 | 24 | adantl 483 |
. . . . . . . . . 10
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π₯ β (π β {π})) |
26 | 4 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π β β) |
27 | 24 | eldifad 3960 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β π₯ β π) |
28 | 27 | adantl 483 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π₯ β π) |
29 | 26, 28 | sseldd 3983 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π₯ β β) |
30 | 5 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π β β) |
31 | 29, 30 | abssubd 15397 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (absβ(π₯ β π)) = (absβ(π β π₯))) |
32 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’ (abs
β β ) = (abs β β ) |
33 | 32 | cnmetdval 24279 |
. . . . . . . . . . . . . 14
β’ ((π β β β§ π₯ β β) β (π(abs β β )π₯) = (absβ(π β π₯))) |
34 | 30, 29, 33 | syl2anc 585 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (π(abs β β )π₯) = (absβ(π β π₯))) |
35 | 31, 34 | eqtr4d 2776 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (absβ(π₯ β π)) = (π(abs β β )π₯)) |
36 | 35 | adantlr 714 |
. . . . . . . . . . 11
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (absβ(π₯ β π)) = (π(abs β β )π₯)) |
37 | | elinel1 4195 |
. . . . . . . . . . . . . 14
β’ (π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β π₯ β (π(ballβ(abs β β ))π)) |
38 | 37 | adantl 483 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π₯ β (π(ballβ(abs β β ))π)) |
39 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (abs β β ) β
(βMetββ)) |
40 | 11 | adantr 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π β β) |
41 | | rpxr 12980 |
. . . . . . . . . . . . . . 15
β’ (π β β+
β π β
β*) |
42 | 41 | ad2antlr 726 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β π β β*) |
43 | | elbl 23886 |
. . . . . . . . . . . . . 14
β’ (((abs
β β ) β (βMetββ) β§ π β β β§ π β β*) β (π₯ β (π(ballβ(abs β β ))π) β (π₯ β β β§ (π(abs β β )π₯) < π))) |
44 | 39, 40, 42, 43 | syl3anc 1372 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (π₯ β (π(ballβ(abs β β ))π) β (π₯ β β β§ (π(abs β β )π₯) < π))) |
45 | 38, 44 | mpbid 231 |
. . . . . . . . . . . 12
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (π₯ β β β§ (π(abs β β )π₯) < π)) |
46 | 45 | simprd 497 |
. . . . . . . . . . 11
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (π(abs β β )π₯) < π) |
47 | 36, 46 | eqbrtrd 5170 |
. . . . . . . . . 10
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (absβ(π₯ β π)) < π) |
48 | 25, 47 | jca 513 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π}))) β (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) |
49 | 48 | ex 414 |
. . . . . . . 8
β’ ((π β§ π β β+) β (π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π))) |
50 | 49 | adantlr 714 |
. . . . . . 7
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β (π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π))) |
51 | 50 | eximdv 1921 |
. . . . . 6
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β
(βπ₯ π₯ β ((π(ballβ(abs β β ))π) β© (π β {π})) β βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π))) |
52 | 23, 51 | mpd 15 |
. . . . 5
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β
βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) |
53 | | df-rex 3072 |
. . . . 5
β’
(βπ₯ β
(π β {π})(absβ(π₯ β π)) < π β βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) |
54 | 52, 53 | sylibr 233 |
. . . 4
β’ (((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β§ π β β+) β
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
55 | 54 | ralrimiva 3147 |
. . 3
β’ ((π β§ βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) β βπ β β+
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
56 | 9 | a1i 11 |
. . . . . . . 8
β’ (π β (abs β β )
β (βMetββ)) |
57 | 13 | neibl 24002 |
. . . . . . . 8
β’ (((abs
β β ) β (βMetββ) β§ π β β) β (π β
((neiβ(TopOpenββfld))β{π}) β (π β β β§ βπ β β+
(π(ballβ(abs β
β ))π) β π))) |
58 | 56, 5, 57 | syl2anc 585 |
. . . . . . 7
β’ (π β (π β
((neiβ(TopOpenββfld))β{π}) β (π β β β§ βπ β β+
(π(ballβ(abs β
β ))π) β π))) |
59 | 58 | simplbda 501 |
. . . . . 6
β’ ((π β§ π β
((neiβ(TopOpenββfld))β{π})) β βπ β β+ (π(ballβ(abs β β
))π) β π) |
60 | 59 | adantlr 714 |
. . . . 5
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β
((neiβ(TopOpenββfld))β{π})) β βπ β β+ (π(ballβ(abs β β
))π) β π) |
61 | | nfv 1918 |
. . . . . . . 8
β’
β²ππ |
62 | | nfra1 3282 |
. . . . . . . 8
β’
β²πβπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π |
63 | 61, 62 | nfan 1903 |
. . . . . . 7
β’
β²π(π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
64 | | nfv 1918 |
. . . . . . 7
β’
β²π π β
((neiβ(TopOpenββfld))β{π}) |
65 | 63, 64 | nfan 1903 |
. . . . . 6
β’
β²π((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β
((neiβ(TopOpenββfld))β{π})) |
66 | | nfv 1918 |
. . . . . 6
β’
β²π(π β© (π β {π})) β β
|
67 | | simp1l 1198 |
. . . . . . . . . 10
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β π) |
68 | | simp2 1138 |
. . . . . . . . . 10
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β π β β+) |
69 | 67, 68 | jca 513 |
. . . . . . . . 9
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β (π β§ π β
β+)) |
70 | | rspa 3246 |
. . . . . . . . . . 11
β’
((βπ β
β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π β§ π β β+) β
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
71 | 70 | adantll 713 |
. . . . . . . . . 10
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+) β
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
72 | 71 | 3adant3 1133 |
. . . . . . . . 9
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
73 | | simp3 1139 |
. . . . . . . . 9
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β (π(ballβ(abs β β ))π) β π) |
74 | 53 | biimpi 215 |
. . . . . . . . . . . 12
β’
(βπ₯ β
(π β {π})(absβ(π₯ β π)) < π β βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) |
75 | 74 | ad2antlr 726 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) β βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) |
76 | | nfv 1918 |
. . . . . . . . . . . . . 14
β’
β²π₯(π β§ π β β+) |
77 | | nfre1 3283 |
. . . . . . . . . . . . . 14
β’
β²π₯βπ₯ β (π β {π})(absβ(π₯ β π)) < π |
78 | 76, 77 | nfan 1903 |
. . . . . . . . . . . . 13
β’
β²π₯((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) |
79 | | nfv 1918 |
. . . . . . . . . . . . 13
β’
β²π₯(π(ballβ(abs β β
))π) β π |
80 | 78, 79 | nfan 1903 |
. . . . . . . . . . . 12
β’
β²π₯(((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) |
81 | | simplr 768 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π(ballβ(abs β β ))π) β π) |
82 | 4 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π₯ β (π β {π})) β π β β) |
83 | | eldifi 4126 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π₯ β (π β {π}) β π₯ β π) |
84 | 83 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π₯ β (π β {π})) β π₯ β π) |
85 | 82, 84 | sseldd 3983 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π₯ β (π β {π})) β π₯ β β) |
86 | 85 | adantrr 716 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β β) |
87 | 5 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β§ π₯ β (π β {π})) β π β β) |
88 | 87, 85, 33 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π₯ β (π β {π})) β (π(abs β β )π₯) = (absβ(π β π₯))) |
89 | 87, 85 | abssubd 15397 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π₯ β (π β {π})) β (absβ(π β π₯)) = (absβ(π₯ β π))) |
90 | 88, 89 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π₯ β (π β {π})) β (π(abs β β )π₯) = (absβ(π₯ β π))) |
91 | 90 | adantrr 716 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π(abs β β )π₯) = (absβ(π₯ β π))) |
92 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (absβ(π₯ β π)) < π) |
93 | 91, 92 | eqbrtrd 5170 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π(abs β β )π₯) < π) |
94 | 86, 93 | jca 513 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π₯ β β β§ (π(abs β β )π₯) < π)) |
95 | 94 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π₯ β β β§ (π(abs β β )π₯) < π)) |
96 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (abs β β ) β
(βMetββ)) |
97 | 11 | adantr 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π β β) |
98 | 41 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π β β*) |
99 | 96, 97, 98, 43 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β (π₯ β (π(ballβ(abs β β ))π) β (π₯ β β β§ (π(abs β β )π₯) < π))) |
100 | 95, 99 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β β+) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β (π(ballβ(abs β β ))π)) |
101 | 100 | adantlr 714 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β (π(ballβ(abs β β ))π)) |
102 | 81, 101 | sseldd 3983 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β π) |
103 | | simprl 770 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β (π β {π})) |
104 | 102, 103 | elind 4194 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β§ (π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π)) β π₯ β (π β© (π β {π}))) |
105 | 104 | ex 414 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β+) β§ (π(ballβ(abs β β
))π) β π) β ((π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π) β π₯ β (π β© (π β {π})))) |
106 | 105 | adantlr 714 |
. . . . . . . . . . . 12
β’ ((((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) β ((π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π) β π₯ β (π β© (π β {π})))) |
107 | 80, 106 | eximd 2210 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) β (βπ₯(π₯ β (π β {π}) β§ (absβ(π₯ β π)) < π) β βπ₯ π₯ β (π β© (π β {π})))) |
108 | 75, 107 | mpd 15 |
. . . . . . . . . 10
β’ ((((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) β βπ₯ π₯ β (π β© (π β {π}))) |
109 | | n0 4346 |
. . . . . . . . . 10
β’ ((π β© (π β {π})) β β
β βπ₯ π₯ β (π β© (π β {π}))) |
110 | 108, 109 | sylibr 233 |
. . . . . . . . 9
β’ ((((π β§ π β β+) β§
βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ (π(ballβ(abs β β ))π) β π) β (π β© (π β {π})) β β
) |
111 | 69, 72, 73, 110 | syl21anc 837 |
. . . . . . . 8
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β β+ β§ (π(ballβ(abs β β
))π) β π) β (π β© (π β {π})) β β
) |
112 | 111 | 3exp 1120 |
. . . . . . 7
β’ ((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β (π β β+ β ((π(ballβ(abs β β
))π) β π β (π β© (π β {π})) β β
))) |
113 | 112 | adantr 482 |
. . . . . 6
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β
((neiβ(TopOpenββfld))β{π})) β (π β β+ β ((π(ballβ(abs β β
))π) β π β (π β© (π β {π})) β β
))) |
114 | 65, 66, 113 | rexlimd 3264 |
. . . . 5
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β
((neiβ(TopOpenββfld))β{π})) β (βπ β β+ (π(ballβ(abs β β
))π) β π β (π β© (π β {π})) β β
)) |
115 | 60, 114 | mpd 15 |
. . . 4
β’ (((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β§ π β
((neiβ(TopOpenββfld))β{π})) β (π β© (π β {π})) β β
) |
116 | 115 | ralrimiva 3147 |
. . 3
β’ ((π β§ βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π) β βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
) |
117 | 55, 116 | impbida 800 |
. 2
β’ (π β (βπ β
((neiβ(TopOpenββfld))β{π})(π β© (π β {π})) β β
β βπ β β+
βπ₯ β (π β {π})(absβ(π₯ β π)) < π)) |
118 | 8, 117 | bitrd 279 |
1
β’ (π β (π β
((limPtβ(TopOpenββfld))βπ) β βπ β β+ βπ₯ β (π β {π})(absβ(π₯ β π)) < π)) |