Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpcn Structured version   Visualization version   GIF version

Theorem islpcn 43180
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islpcn.s (𝜑𝑆 ⊆ ℂ)
islpcn.p (𝜑𝑃 ∈ ℂ)
Assertion
Ref Expression
islpcn (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Distinct variable groups:   𝑃,𝑒,𝑥   𝑆,𝑒,𝑥   𝜑,𝑒,𝑥

Proof of Theorem islpcn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 23947 . . . 4 (TopOpen‘ℂfld) ∈ Top
32a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
4 islpcn.s . . 3 (𝜑𝑆 ⊆ ℂ)
5 islpcn.p . . 3 (𝜑𝑃 ∈ ℂ)
6 unicntop 23949 . . . 4 ℂ = (TopOpen‘ℂfld)
76islp2 22296 . . 3 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑃 ∈ ℂ) → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
83, 4, 5, 7syl3anc 1370 . 2 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
9 cnxmet 23936 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
115adantr 481 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑃 ∈ ℂ)
12 simpr 485 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
131cnfldtopn 23945 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blnei 23658 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1510, 11, 12, 14syl3anc 1370 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
1615adantlr 712 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
17 simplr 766 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
18 ineq1 4139 . . . . . . . . . 10 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → (𝑛 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
1918neeq1d 3003 . . . . . . . . 9 (𝑛 = (𝑃(ball‘(abs ∘ − ))𝑒) → ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
2019rspcva 3559 . . . . . . . 8 (((𝑃(ball‘(abs ∘ − ))𝑒) ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
2116, 17, 20syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
22 n0 4280 . . . . . . 7 (((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
2321, 22sylib 217 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})))
24 elinel2 4130 . . . . . . . . . . 11 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
2524adantl 482 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
264adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑆 ⊆ ℂ)
2724eldifad 3899 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
2827adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥𝑆)
2926, 28sseldd 3922 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ ℂ)
305adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
3129, 30abssubd 15165 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (abs‘(𝑃𝑥)))
32 eqid 2738 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 23934 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3430, 29, 33syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
3531, 34eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
3635adantlr 712 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) = (𝑃(abs ∘ − )𝑥))
37 elinel1 4129 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
3837adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
399a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4011adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑃 ∈ ℂ)
41 rpxr 12739 . . . . . . . . . . . . . . 15 (𝑒 ∈ ℝ+𝑒 ∈ ℝ*)
4241ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → 𝑒 ∈ ℝ*)
43 elbl 23541 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑒 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4439, 40, 42, 43syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
4538, 44mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
4645simprd 496 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑃(abs ∘ − )𝑥) < 𝑒)
4736, 46eqbrtrd 5096 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (abs‘(𝑥𝑃)) < 𝑒)
4825, 47jca 512 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃}))) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
4948ex 413 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5049adantlr 712 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5150eximdv 1920 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → (∃𝑥 𝑥 ∈ ((𝑃(ball‘(abs ∘ − ))𝑒) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)))
5223, 51mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
53 df-rex 3070 . . . . 5 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 ↔ ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
5452, 53sylibr 233 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
5554ralrimiva 3103 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) → ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
569a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
5713neibl 23657 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ) → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5856, 5, 57syl2anc 584 . . . . . . 7 (𝜑 → (𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)))
5958simplbda 500 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
6059adantlr 712 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → ∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
61 nfv 1917 . . . . . . . 8 𝑒𝜑
62 nfra1 3144 . . . . . . . 8 𝑒𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
6361, 62nfan 1902 . . . . . . 7 𝑒(𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
64 nfv 1917 . . . . . . 7 𝑒 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})
6563, 64nfan 1902 . . . . . 6 𝑒((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃}))
66 nfv 1917 . . . . . 6 𝑒(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅
67 simp1l 1196 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝜑)
68 simp2 1136 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → 𝑒 ∈ ℝ+)
6967, 68jca 512 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝜑𝑒 ∈ ℝ+))
70 rspa 3132 . . . . . . . . . . 11 ((∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
7170adantll 711 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
72713adant3 1131 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
73 simp3 1137 . . . . . . . . 9 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
7453biimpi 215 . . . . . . . . . . . 12 (∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒 → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
7574ad2antlr 724 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒))
76 nfv 1917 . . . . . . . . . . . . . 14 𝑥(𝜑𝑒 ∈ ℝ+)
77 nfre1 3239 . . . . . . . . . . . . . 14 𝑥𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒
7876, 77nfan 1902 . . . . . . . . . . . . 13 𝑥((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒)
79 nfv 1917 . . . . . . . . . . . . 13 𝑥(𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛
8078, 79nfan 1902 . . . . . . . . . . . 12 𝑥(((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
81 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛)
824adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑆 ⊆ ℂ)
83 eldifi 4061 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥𝑆)
8582, 84sseldd 3922 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑥 ∈ ℂ)
8685adantrr 714 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ ℂ)
875adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → 𝑃 ∈ ℂ)
8887, 85, 33syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑃𝑥)))
8987, 85abssubd 15165 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (abs‘(𝑃𝑥)) = (abs‘(𝑥𝑃)))
9088, 89eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
9190adantrr 714 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) = (abs‘(𝑥𝑃)))
92 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs‘(𝑥𝑃)) < 𝑒)
9391, 92eqbrtrd 5096 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑃(abs ∘ − )𝑥) < 𝑒)
9486, 93jca 512 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
9594adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒))
969a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9711adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑃 ∈ ℂ)
9841ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑒 ∈ ℝ*)
9996, 97, 98, 43syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → (𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒) ↔ (𝑥 ∈ ℂ ∧ (𝑃(abs ∘ − )𝑥) < 𝑒)))
10095, 99mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
101100adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑃(ball‘(abs ∘ − ))𝑒))
10281, 101sseldd 3922 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥𝑛)
103 simprl 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑆 ∖ {𝑃}))
104102, 103elind 4128 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) ∧ (𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒)) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
105104ex 413 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
106105adantlr 712 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ((𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10780, 106eximd 2209 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (∃𝑥(𝑥 ∈ (𝑆 ∖ {𝑃}) ∧ (abs‘(𝑥𝑃)) < 𝑒) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃}))))
10875, 107mpd 15 . . . . . . . . . 10 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
109 n0 4280 . . . . . . . . . 10 ((𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑛 ∩ (𝑆 ∖ {𝑃})))
110108, 109sylibr 233 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11169, 72, 73, 110syl21anc 835 . . . . . . . 8 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑒 ∈ ℝ+ ∧ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1121113exp 1118 . . . . . . 7 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
113112adantr 481 . . . . . 6 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑒 ∈ ℝ+ → ((𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
11465, 66, 113rexlimd 3250 . . . . 5 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (∃𝑒 ∈ ℝ+ (𝑃(ball‘(abs ∘ − ))𝑒) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
11560, 114mpd 15 . . . 4 (((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) ∧ 𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})) → (𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
116115ralrimiva 3103 . . 3 ((𝜑 ∧ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒) → ∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
11755, 116impbida 798 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘(TopOpen‘ℂfld))‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
1188, 117bitrd 278 1 (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥𝑃)) < 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  cin 3886  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869  *cxr 11008   < clt 11009  cmin 11205  +crp 12730  abscabs 14945  TopOpenctopn 17132  ∞Metcxmet 20582  ballcbl 20584  fldccnfld 20597  Topctop 22042  neicnei 22248  limPtclp 22285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-xms 23473  df-ms 23474
This theorem is referenced by:  limclner  43192
  Copyright terms: Public domain W3C validator