MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ococnv2 Structured version   Visualization version   GIF version

Theorem f1ococnv2 6790
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1ococnv2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem f1ococnv2
StepHypRef Expression
1 f1ofo 6770 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fococnv2 6789 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   I cid 5510  ccnv 5615  cres 5618  ccom 5620  ontowfo 6479  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  f1ococnv1  6792  f1ocnvfv2  7211  mapen  9054  hashfacen  14361  setcinv  17997  catcisolem  18017  symginv  19315  f1omvdco2  19361  gsumval3  19820  gsumzf1o  19825  rngcinv  20553  ringcinv  20587  psrass1lem  21870  evl1var  22252  pf1ind  22271  fcobij  32701  cocnvf1o  32710  symgfcoeu  33049  cycpmconjvlem  33108  cycpmconjs  33123  cyc3conja  33124  mplvrpmrhm  33575  erdsze2lem2  35246  ltrncoidN  40173  cdlemg46  40780  cdlemk45  40992  cdlemk55a  41004  tendocnv  41066  eldioph2  42801  rngcinvALTV  48313  ringcinvALTV  48347
  Copyright terms: Public domain W3C validator