![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Structured version Visualization version GIF version |
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
f1ococnv2 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6855 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
2 | fococnv2 6874 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 I cid 5581 ◡ccnv 5687 ↾ cres 5690 ∘ ccom 5692 –onto→wfo 6560 –1-1-onto→wf1o 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 |
This theorem is referenced by: f1ococnv1 6877 f1ocnvfv2 7296 mapen 9179 hashfacen 14489 setcinv 18143 catcisolem 18163 symginv 19434 f1omvdco2 19480 gsumval3 19939 gsumzf1o 19944 rngcinv 20653 ringcinv 20687 psrass1lem 21969 evl1var 22355 pf1ind 22374 fcobij 32739 symgfcoeu 33084 cycpmconjvlem 33143 cycpmconjs 33158 cyc3conja 33159 erdsze2lem2 35188 ltrncoidN 40110 cdlemg46 40717 cdlemk45 40929 cdlemk55a 40941 tendocnv 41003 eldioph2 42749 rngcinvALTV 48119 ringcinvALTV 48153 |
Copyright terms: Public domain | W3C validator |