MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ococnv2 Structured version   Visualization version   GIF version

Theorem f1ococnv2 6795
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1ococnv2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem f1ococnv2
StepHypRef Expression
1 f1ofo 6775 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fococnv2 6794 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5517  ccnv 5622  cres 5625  ccom 5627  ontowfo 6484  1-1-ontowf1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493
This theorem is referenced by:  f1ococnv1  6797  f1ocnvfv2  7218  mapen  9065  hashfacen  14379  setcinv  18015  catcisolem  18035  symginv  19299  f1omvdco2  19345  gsumval3  19804  gsumzf1o  19809  rngcinv  20540  ringcinv  20574  psrass1lem  21857  evl1var  22239  pf1ind  22258  fcobij  32678  symgfcoeu  33037  cycpmconjvlem  33096  cycpmconjs  33111  cyc3conja  33112  erdsze2lem2  35179  ltrncoidN  40110  cdlemg46  40717  cdlemk45  40929  cdlemk55a  40941  tendocnv  41003  eldioph2  42738  rngcinvALTV  48264  ringcinvALTV  48298
  Copyright terms: Public domain W3C validator