| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Structured version Visualization version GIF version | ||
| Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1ococnv2 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 6777 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 2 | fococnv2 6796 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 I cid 5515 ◡ccnv 5620 ↾ cres 5623 ∘ ccom 5625 –onto→wfo 6486 –1-1-onto→wf1o 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 |
| This theorem is referenced by: f1ococnv1 6799 f1ocnvfv2 7219 mapen 9063 hashfacen 14365 setcinv 18001 catcisolem 18021 symginv 19318 f1omvdco2 19364 gsumval3 19823 gsumzf1o 19828 rngcinv 20556 ringcinv 20590 psrass1lem 21873 evl1var 22254 pf1ind 22273 fcobij 32709 cocnvf1o 32718 symgfcoeu 33060 cycpmconjvlem 33119 cycpmconjs 33134 cyc3conja 33135 mplvrpmrhm 33597 erdsze2lem2 35271 ltrncoidN 40250 cdlemg46 40857 cdlemk45 41069 cdlemk55a 41081 tendocnv 41143 eldioph2 42882 rngcinvALTV 48403 ringcinvALTV 48437 |
| Copyright terms: Public domain | W3C validator |