MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ococnv2 Structured version   Visualization version   GIF version

Theorem f1ococnv2 6797
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1ococnv2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem f1ococnv2
StepHypRef Expression
1 f1ofo 6777 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fococnv2 6796 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   I cid 5515  ccnv 5620  cres 5623  ccom 5625  ontowfo 6486  1-1-ontowf1o 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495
This theorem is referenced by:  f1ococnv1  6799  f1ocnvfv2  7219  mapen  9063  hashfacen  14365  setcinv  18001  catcisolem  18021  symginv  19318  f1omvdco2  19364  gsumval3  19823  gsumzf1o  19828  rngcinv  20556  ringcinv  20590  psrass1lem  21873  evl1var  22254  pf1ind  22273  fcobij  32709  cocnvf1o  32718  symgfcoeu  33060  cycpmconjvlem  33119  cycpmconjs  33134  cyc3conja  33135  mplvrpmrhm  33597  erdsze2lem2  35271  ltrncoidN  40250  cdlemg46  40857  cdlemk45  41069  cdlemk55a  41081  tendocnv  41143  eldioph2  42882  rngcinvALTV  48403  ringcinvALTV  48437
  Copyright terms: Public domain W3C validator