| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Structured version Visualization version GIF version | ||
| Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1ococnv2 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 6825 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 2 | fococnv2 6844 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 I cid 5547 ◡ccnv 5653 ↾ cres 5656 ∘ ccom 5658 –onto→wfo 6529 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1ococnv1 6847 f1ocnvfv2 7270 mapen 9155 hashfacen 14472 setcinv 18103 catcisolem 18123 symginv 19383 f1omvdco2 19429 gsumval3 19888 gsumzf1o 19893 rngcinv 20597 ringcinv 20631 psrass1lem 21892 evl1var 22274 pf1ind 22293 fcobij 32699 symgfcoeu 33093 cycpmconjvlem 33152 cycpmconjs 33167 cyc3conja 33168 erdsze2lem2 35226 ltrncoidN 40147 cdlemg46 40754 cdlemk45 40966 cdlemk55a 40978 tendocnv 41040 eldioph2 42785 rngcinvALTV 48251 ringcinvALTV 48285 |
| Copyright terms: Public domain | W3C validator |