MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ococnv2 Structured version   Visualization version   GIF version

Theorem f1ococnv2 6845
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1ococnv2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem f1ococnv2
StepHypRef Expression
1 f1ofo 6825 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fococnv2 6844 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
31, 2syl 17 1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5547  ccnv 5653  cres 5656  ccom 5658  ontowfo 6529  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  f1ococnv1  6847  f1ocnvfv2  7270  mapen  9155  hashfacen  14472  setcinv  18103  catcisolem  18123  symginv  19383  f1omvdco2  19429  gsumval3  19888  gsumzf1o  19893  rngcinv  20597  ringcinv  20631  psrass1lem  21892  evl1var  22274  pf1ind  22293  fcobij  32699  symgfcoeu  33093  cycpmconjvlem  33152  cycpmconjs  33167  cyc3conja  33168  erdsze2lem2  35226  ltrncoidN  40147  cdlemg46  40754  cdlemk45  40966  cdlemk55a  40978  tendocnv  41040  eldioph2  42785  rngcinvALTV  48251  ringcinvALTV  48285
  Copyright terms: Public domain W3C validator