![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Structured version Visualization version GIF version |
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
f1ococnv2 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6364 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
2 | fococnv2 6382 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 I cid 5220 ◡ccnv 5312 ↾ cres 5315 ∘ ccom 5317 –onto→wfo 6100 –1-1-onto→wf1o 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 |
This theorem is referenced by: f1ococnv1 6385 f1ocnvfv2 6762 mapen 8367 hashfacen 13486 setcinv 17053 catcisolem 17069 symginv 18133 f1omvdco2 18179 gsumval3 18622 gsumzf1o 18627 psrass1lem 19699 evl1var 20021 pf1ind 20040 fcobij 30017 symgfcoeu 30360 erdsze2lem2 31702 ltrncoidN 36148 cdlemg46 36755 cdlemk45 36967 cdlemk55a 36979 tendocnv 37041 eldioph2 38106 rngcinv 42775 rngcinvALTV 42787 ringcinv 42826 ringcinvALTV 42850 |
Copyright terms: Public domain | W3C validator |