Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Structured version Visualization version GIF version |
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
f1ococnv2 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 6723 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
2 | fococnv2 6742 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5488 ◡ccnv 5588 ↾ cres 5591 ∘ ccom 5593 –onto→wfo 6431 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1ococnv1 6745 f1ocnvfv2 7149 mapen 8928 hashfacen 14166 hashfacenOLD 14167 setcinv 17805 catcisolem 17825 symginv 19010 f1omvdco2 19056 gsumval3 19508 gsumzf1o 19513 psrass1lemOLD 21143 psrass1lem 21146 evl1var 21502 pf1ind 21521 fcobij 31057 symgfcoeu 31351 cycpmconjvlem 31408 cycpmconjs 31423 cyc3conja 31424 erdsze2lem2 33166 ltrncoidN 38142 cdlemg46 38749 cdlemk45 38961 cdlemk55a 38973 tendocnv 39035 eldioph2 40584 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 |
Copyright terms: Public domain | W3C validator |