MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen4g Structured version   Visualization version   GIF version

Theorem f1oen4g 8882
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8888 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1oen4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6747 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3550 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 406 . . 3 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
433ad2antl1 1186 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
5 breng 8873 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
653adant1 1130 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
76adantr 480 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
84, 7mpbird 257 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2110   class class class wbr 5089  1-1-ontowf1o 6476  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-en 8865
This theorem is referenced by:  dif1enlem  9064
  Copyright terms: Public domain W3C validator