MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen4g Structured version   Visualization version   GIF version

Theorem f1oen4g 8785
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8792 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1oen4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6734 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3541 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 408 . . 3 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
433ad2antl1 1185 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
5 breng 8773 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
653adant1 1130 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
76adantr 482 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
84, 7mpbird 257 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087  wex 1779  wcel 2104   class class class wbr 5081  1-1-ontowf1o 6457  cen 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-en 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator