MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen4g Structured version   Visualization version   GIF version

Theorem f1oen4g 9024
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 9031 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1oen4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6850 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3610 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 406 . . 3 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
433ad2antl1 1185 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
5 breng 9012 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
653adant1 1130 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
76adantr 480 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
84, 7mpbird 257 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wex 1777  wcel 2108   class class class wbr 5166  1-1-ontowf1o 6572  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004
This theorem is referenced by:  dif1enlem  9222
  Copyright terms: Public domain W3C validator