![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oen3g | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 9010 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
f1oen3g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 6837 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
2 | 1 | spcegv 3597 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
3 | 2 | imp 406 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
4 | bren 8994 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 class class class wbr 5148 –1-1-onto→wf1o 6562 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 |
This theorem is referenced by: f1oen2g 9008 f1imaen3g 9055 unen 9085 domdifsn 9093 domunsncan 9111 sucdom2OLD 9121 sbthlem10 9131 domssex 9177 dif1enlemOLD 9196 pssnn 9207 f1oenfi 9217 f1oenfirn 9218 sbthfilem 9236 sucdom2 9241 phplem2OLD 9253 f1finf1oOLD 9304 oien 9576 infdifsn 9695 fin4en1 10347 fin23lem21 10377 hashf1lem2 14492 odinf 19596 gsumval3lem2 19939 gsumval3 19940 hmphen2 23823 fnpreimac 32688 pibt2 37400 |
Copyright terms: Public domain | W3C validator |