MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen3g Structured version   Visualization version   GIF version

Theorem f1oen3g 8892
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8896 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen3g ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen3g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6752 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3552 . . 3 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 406 . 2 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 8882 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
53, 4sylibr 234 1 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109   class class class wbr 5092  1-1-ontowf1o 6481  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-en 8873
This theorem is referenced by:  f1oen2g  8894  f1imaen3g  8941  unen  8971  domdifsn  8977  domunsncan  8994  sbthlem10  9013  domssex  9055  pssnn  9082  f1oenfi  9093  f1oenfirn  9094  sbthfilem  9112  sucdom2  9117  oien  9430  infdifsn  9553  fin4en1  10203  fin23lem21  10233  hashf1lem2  14363  odinf  19442  gsumval3lem2  19785  gsumval3  19786  hmphen2  23684  fnpreimac  32622  pibt2  37411
  Copyright terms: Public domain W3C validator