MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen3g Structured version   Visualization version   GIF version

Theorem f1oen3g 8938
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8942 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen3g ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen3g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6788 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3563 . . 3 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 406 . 2 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 8928 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
53, 4sylibr 234 1 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109   class class class wbr 5107  1-1-ontowf1o 6510  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919
This theorem is referenced by:  f1oen2g  8940  f1imaen3g  8987  unen  9017  domdifsn  9024  domunsncan  9041  sbthlem10  9060  domssex  9102  dif1enlemOLD  9121  pssnn  9132  f1oenfi  9143  f1oenfirn  9144  sbthfilem  9162  sucdom2  9167  f1finf1oOLD  9217  oien  9491  infdifsn  9610  fin4en1  10262  fin23lem21  10292  hashf1lem2  14421  odinf  19493  gsumval3lem2  19836  gsumval3  19837  hmphen2  23686  fnpreimac  32595  pibt2  37405
  Copyright terms: Public domain W3C validator