MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen3g Structured version   Visualization version   GIF version

Theorem f1oen3g 8940
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8944 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen3g ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oen3g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6790 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
21spcegv 3566 . . 3 (𝐹𝑉 → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
32imp 406 . 2 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 8930 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
53, 4sylibr 234 1 ((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109   class class class wbr 5109  1-1-ontowf1o 6512  cen 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-en 8921
This theorem is referenced by:  f1oen2g  8942  f1imaen3g  8989  unen  9019  domdifsn  9027  domunsncan  9045  sucdom2OLD  9055  sbthlem10  9065  domssex  9107  dif1enlemOLD  9126  pssnn  9137  f1oenfi  9148  f1oenfirn  9149  sbthfilem  9167  sucdom2  9172  f1finf1oOLD  9223  oien  9497  infdifsn  9616  fin4en1  10268  fin23lem21  10298  hashf1lem2  14427  odinf  19499  gsumval3lem2  19842  gsumval3  19843  hmphen2  23692  fnpreimac  32601  pibt2  37400
  Copyright terms: Public domain W3C validator