![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oen3g | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 8969 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
f1oen3g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 6821 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
2 | 1 | spcegv 3587 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
3 | 2 | imp 407 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
4 | bren 8951 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 class class class wbr 5148 –1-1-onto→wf1o 6542 ≈ cen 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-en 8942 |
This theorem is referenced by: f1oen2g 8966 unen 9048 domdifsn 9056 domunsncan 9074 sucdom2OLD 9084 sbthlem10 9094 domssex 9140 dif1enlemOLD 9159 pssnn 9170 f1oenfi 9184 f1oenfirn 9185 sbthfilem 9203 sucdom2 9208 phplem2OLD 9220 pssnnOLD 9267 f1finf1oOLD 9274 oien 9535 infdifsn 9654 fin4en1 10306 fin23lem21 10336 hashf1lem2 14421 odinf 19472 gsumval3lem2 19815 gsumval3 19816 hmphen2 23523 fnpreimac 32151 pibt2 36601 |
Copyright terms: Public domain | W3C validator |