| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8965 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5710 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ωcom 7861 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dom 8961 |
| This theorem is referenced by: cnvct 9048 ssctOLD 9066 xpct 10030 iunfictbso 10128 unctb 10218 dmct 10538 fimact 10549 fnct 10551 mptct 10552 iunctb 10588 cctop 22944 1stcrestlem 23390 2ndcdisj2 23395 dis2ndc 23398 uniiccdif 25531 mptctf 32695 elsigagen2 34179 measvunilem 34243 measvunilem0 34244 measvuni 34245 sxbrsigalem1 34317 omssubadd 34332 carsggect 34350 pmeasadd 34357 mpct 45225 axccdom 45246 rn1st 45297 |
| Copyright terms: Public domain | W3C validator |