![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8990 | . 2 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5745 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ωcom 7887 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dom 8986 |
This theorem is referenced by: cnvct 9073 ssctOLD 9091 xpct 10054 iunfictbso 10152 unctb 10242 dmct 10562 fimact 10573 fnct 10575 mptct 10576 iunctb 10612 cctop 23029 1stcrestlem 23476 2ndcdisj2 23481 dis2ndc 23484 uniiccdif 25627 mptctf 32735 elsigagen2 34129 measvunilem 34193 measvunilem0 34194 measvuni 34195 sxbrsigalem1 34267 omssubadd 34282 carsggect 34300 pmeasadd 34307 mpct 45144 axccdom 45165 rn1st 45219 |
Copyright terms: Public domain | W3C validator |