| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8881 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5675 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ωcom 7802 ≼ cdom 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dom 8877 |
| This theorem is referenced by: cnvct 8963 xpct 9914 iunfictbso 10012 unctb 10102 dmct 10422 fimact 10433 fnct 10435 mptct 10436 iunctb 10472 cctop 22922 1stcrestlem 23368 2ndcdisj2 23373 dis2ndc 23376 uniiccdif 25507 mptctf 32703 elsigagen2 34182 measvunilem 34246 measvunilem0 34247 measvuni 34248 sxbrsigalem1 34319 omssubadd 34334 carsggect 34352 pmeasadd 34359 mpct 45322 axccdom 45343 rn1st 45394 |
| Copyright terms: Public domain | W3C validator |