Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8739 | . 2 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5643 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dom 8735 |
This theorem is referenced by: cnvct 8824 ssct 8839 xpct 9772 iunfictbso 9870 unctb 9961 dmct 10280 fimact 10291 fnct 10293 mptct 10294 iunctb 10330 cctop 22156 1stcrestlem 22603 2ndcdisj2 22608 dis2ndc 22611 uniiccdif 24742 mptctf 31052 elsigagen2 32116 measvunilem 32180 measvunilem0 32181 measvuni 32182 sxbrsigalem1 32252 omssubadd 32267 carsggect 32285 pmeasadd 32292 mpct 42741 axccdom 42762 |
Copyright terms: Public domain | W3C validator |