Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8697 | . 2 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5634 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ωcom 7687 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dom 8693 |
This theorem is referenced by: cnvct 8778 ssct 8793 xpct 9703 iunfictbso 9801 unctb 9892 dmct 10211 fimact 10222 fnct 10224 mptct 10225 iunctb 10261 cctop 22064 1stcrestlem 22511 2ndcdisj2 22516 dis2ndc 22519 uniiccdif 24647 mptctf 30954 elsigagen2 32016 measvunilem 32080 measvunilem0 32081 measvuni 32082 sxbrsigalem1 32152 omssubadd 32167 carsggect 32185 pmeasadd 32192 mpct 42630 axccdom 42651 |
Copyright terms: Public domain | W3C validator |