| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8924 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5694 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ωcom 7842 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dom 8920 |
| This theorem is referenced by: cnvct 9005 xpct 9969 iunfictbso 10067 unctb 10157 dmct 10477 fimact 10488 fnct 10490 mptct 10491 iunctb 10527 cctop 22893 1stcrestlem 23339 2ndcdisj2 23344 dis2ndc 23347 uniiccdif 25479 mptctf 32641 elsigagen2 34138 measvunilem 34202 measvunilem0 34203 measvuni 34204 sxbrsigalem1 34276 omssubadd 34291 carsggect 34309 pmeasadd 34316 mpct 45195 axccdom 45216 rn1st 45267 |
| Copyright terms: Public domain | W3C validator |