| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8885 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5679 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ωcom 7806 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dom 8881 |
| This theorem is referenced by: cnvct 8966 xpct 9929 iunfictbso 10027 unctb 10117 dmct 10437 fimact 10448 fnct 10450 mptct 10451 iunctb 10487 cctop 22909 1stcrestlem 23355 2ndcdisj2 23360 dis2ndc 23363 uniiccdif 25495 mptctf 32674 elsigagen2 34114 measvunilem 34178 measvunilem0 34179 measvuni 34180 sxbrsigalem1 34252 omssubadd 34267 carsggect 34285 pmeasadd 34292 mpct 45179 axccdom 45200 rn1st 45251 |
| Copyright terms: Public domain | W3C validator |