| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8875 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5672 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ωcom 7796 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dom 8871 |
| This theorem is referenced by: cnvct 8956 xpct 9904 iunfictbso 10002 unctb 10092 dmct 10412 fimact 10423 fnct 10425 mptct 10426 iunctb 10462 cctop 22919 1stcrestlem 23365 2ndcdisj2 23370 dis2ndc 23373 uniiccdif 25504 mptctf 32694 elsigagen2 34156 measvunilem 34220 measvunilem0 34221 measvuni 34222 sxbrsigalem1 34293 omssubadd 34308 carsggect 34326 pmeasadd 34333 mpct 45237 axccdom 45258 rn1st 45309 |
| Copyright terms: Public domain | W3C validator |