![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8370 | . 2 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5501 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2083 Vcvv 3440 class class class wbr 4968 ωcom 7443 ≼ cdom 8362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-xp 5456 df-rel 5457 df-dom 8366 |
This theorem is referenced by: cnvct 8441 ssct 8452 xpct 9295 iunfictbso 9393 unctb 9480 dmct 9799 fimact 9810 fnct 9812 mptct 9813 iunctb 9849 cctop 21302 1stcrestlem 21748 2ndcdisj2 21753 dis2ndc 21756 uniiccdif 23866 mptctf 30137 elsigagen2 31020 measvunilem 31084 measvunilem0 31085 measvuni 31086 sxbrsigalem1 31156 omssubadd 31171 carsggect 31189 pmeasadd 31196 mpct 41025 axccdom 41048 |
Copyright terms: Public domain | W3C validator |