![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version |
Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 9009 | . 2 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5756 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dom 9005 |
This theorem is referenced by: cnvct 9099 ssctOLD 9118 xpct 10085 iunfictbso 10183 unctb 10273 dmct 10593 fimact 10604 fnct 10606 mptct 10607 iunctb 10643 cctop 23034 1stcrestlem 23481 2ndcdisj2 23486 dis2ndc 23489 uniiccdif 25632 mptctf 32731 elsigagen2 34112 measvunilem 34176 measvunilem0 34177 measvuni 34178 sxbrsigalem1 34250 omssubadd 34265 carsggect 34283 pmeasadd 34290 mpct 45108 axccdom 45129 rn1st 45183 |
Copyright terms: Public domain | W3C validator |