| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ctex | Structured version Visualization version GIF version | ||
| Description: A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
| Ref | Expression |
|---|---|
| ctex | ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8927 | . 2 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5697 | 1 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ωcom 7845 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dom 8923 |
| This theorem is referenced by: cnvct 9008 ssctOLD 9026 xpct 9976 iunfictbso 10074 unctb 10164 dmct 10484 fimact 10495 fnct 10497 mptct 10498 iunctb 10534 cctop 22900 1stcrestlem 23346 2ndcdisj2 23351 dis2ndc 23354 uniiccdif 25486 mptctf 32648 elsigagen2 34145 measvunilem 34209 measvunilem0 34210 measvuni 34211 sxbrsigalem1 34283 omssubadd 34298 carsggect 34316 pmeasadd 34323 mpct 45202 axccdom 45223 rn1st 45274 |
| Copyright terms: Public domain | W3C validator |