![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeng | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oeng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | focdmex 7946 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
2 | f1ofo 6840 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
3 | 1, 2 | impel 505 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ V) |
4 | f1oen2g 8970 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
5 | 4 | 3com23 1125 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ≈ 𝐵) |
6 | 3, 5 | mpd3an3 1461 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 –onto→wfo 6541 –1-1-onto→wf1o 6542 ≈ cen 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-en 8946 |
This theorem is referenced by: f1oen 8975 f1imaeng 9016 f1dmvrnfibi 9342 onadju 10194 fictb 10246 canthp1lem2 10654 unbenlem 16848 conjsubgen 19172 dis2ndc 23284 ovoliunlem1 25351 rabfodom 32177 eulerpartlemgs2 33844 matunitlindflem2 36951 |
Copyright terms: Public domain | W3C validator |