MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeng Structured version   Visualization version   GIF version

Theorem f1oeng 8899
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oeng
StepHypRef Expression
1 focdmex 7894 . . 3 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
2 f1ofo 6775 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
31, 2impel 505 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
4 f1oen2g 8897 . . 3 ((𝐴𝐶𝐵 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
543com23 1126 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵𝐵 ∈ V) → 𝐴𝐵)
63, 5mpd3an3 1464 1 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437   class class class wbr 5093  ontowfo 6484  1-1-ontowf1o 6485  cen 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-en 8876
This theorem is referenced by:  f1oen  8901  f1imaeng  8943  f1dmvrnfibi  9232  onadju  10092  fictb  10142  canthp1lem2  10551  unbenlem  16822  conjsubgen  19165  dis2ndc  23376  ovoliunlem1  25431  rabfodom  32487  hashimaf1  32798  eulerpartlemgs2  34414  matunitlindflem2  37677
  Copyright terms: Public domain W3C validator