MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposconst Structured version   Visualization version   GIF version

Theorem tposconst 7735
Description: The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
tposconst tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶})

Proof of Theorem tposconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpo 7087 . . 3 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
21tposmpo 7734 . 2 tpos ((𝐴 × 𝐵) × {𝐶}) = (𝑦𝐵, 𝑥𝐴𝐶)
3 fconstmpo 7087 . 2 ((𝐵 × 𝐴) × {𝐶}) = (𝑦𝐵, 𝑥𝐴𝐶)
42, 3eqtr4i 2805 1 tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  {csn 4442   × cxp 5406  cmpo 6980  tpos ctpos 7696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-fv 6198  df-oprab 6982  df-mpo 6983  df-tpos 7697
This theorem is referenced by:  mattposvs  20771
  Copyright terms: Public domain W3C validator