MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsc Structured version   Visualization version   GIF version

Theorem matsc 22456
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
matsc.a 𝐴 = (𝑁 Mat 𝑅)
matsc.k 𝐾 = (Base‘𝑅)
matsc.m · = ( ·𝑠𝐴)
matsc.z 0 = (0g𝑅)
Assertion
Ref Expression
matsc ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Distinct variable groups:   𝑖,𝑗, 0   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖,𝑗   𝑖,𝐿,𝑗   𝑖,𝐾,𝑗

Proof of Theorem matsc
StepHypRef Expression
1 simp3 1139 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝐿𝐾)
2 3simpa 1149 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3 matsc.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 22449 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 eqid 2737 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 eqid 2737 . . . . 5 (1r𝐴) = (1r𝐴)
75, 6ringidcl 20262 . . . 4 (𝐴 ∈ Ring → (1r𝐴) ∈ (Base‘𝐴))
82, 4, 73syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) ∈ (Base‘𝐴))
9 matsc.k . . . 4 𝐾 = (Base‘𝑅)
10 matsc.m . . . 4 · = ( ·𝑠𝐴)
11 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
12 eqid 2737 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
133, 5, 9, 10, 11, 12matvsca2 22434 . . 3 ((𝐿𝐾 ∧ (1r𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)))
141, 8, 13syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)))
15 simp1 1137 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝑁 ∈ Fin)
16 simp13 1206 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → 𝐿𝐾)
17 fvex 6919 . . . . 5 (1r𝑅) ∈ V
18 matsc.z . . . . . 6 0 = (0g𝑅)
1918fvexi 6920 . . . . 5 0 ∈ V
2017, 19ifex 4576 . . . 4 if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V
2120a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V)
22 fconstmpo 7550 . . . 4 ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿)
2322a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿))
24 eqid 2737 . . . . 5 (1r𝑅) = (1r𝑅)
253, 24, 18mat1 22453 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
26253adant3 1133 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
2715, 15, 16, 21, 23, 26offval22 8113 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))))
28 ovif2 7532 . . . 4 (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 ))
299, 11, 24ringridm 20267 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
30293adant1 1131 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
319, 11, 18ringrz 20291 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
32313adant1 1131 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4547 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3428, 33eqtrid 2789 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3534mpoeq3dv 7512 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
3614, 27, 353eqtrd 2781 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  ifcif 4525  {csn 4626   × cxp 5683  cfv 6561  (class class class)co 7431  cmpo 7433  f cof 7695  Fincfn 8985  Basecbs 17247  .rcmulr 17298   ·𝑠 cvsca 17301  0gc0g 17484  1rcur 20178  Ringcrg 20230   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mamu 22395  df-mat 22412
This theorem is referenced by:  scmatscm  22519  madurid  22650  chmatval  22835
  Copyright terms: Public domain W3C validator