| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matsc | Structured version Visualization version GIF version | ||
| Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| matsc.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matsc.k | ⊢ 𝐾 = (Base‘𝑅) |
| matsc.m | ⊢ · = ( ·𝑠 ‘𝐴) |
| matsc.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| matsc | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝐿 ∈ 𝐾) | |
| 2 | 3simpa 1148 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
| 3 | matsc.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | 3 | matring 22361 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 5 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 6 | eqid 2733 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 7 | 5, 6 | ringidcl 20187 | . . . 4 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 8 | 2, 4, 7 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 9 | matsc.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | matsc.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 11 | eqid 2733 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | eqid 2733 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 13 | 3, 5, 9, 10, 11, 12 | matvsca2 22346 | . . 3 ⊢ ((𝐿 ∈ 𝐾 ∧ (1r‘𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 14 | 1, 8, 13 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 15 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝑁 ∈ Fin) | |
| 16 | simp13 1206 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈ 𝐾) | |
| 17 | fvex 6843 | . . . . 5 ⊢ (1r‘𝑅) ∈ V | |
| 18 | matsc.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 19 | 18 | fvexi 6844 | . . . . 5 ⊢ 0 ∈ V |
| 20 | 17, 19 | ifex 4527 | . . . 4 ⊢ if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V) |
| 22 | fconstmpo 7471 | . . . 4 ⊢ ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿) | |
| 23 | 22 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿)) |
| 24 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | 3, 24, 18 | mat1 22365 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 26 | 25 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 27 | 15, 15, 16, 21, 23, 26 | offval22 8026 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )))) |
| 28 | ovif2 7453 | . . . 4 ⊢ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) | |
| 29 | 9, 11, 24 | ringridm 20192 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 30 | 29 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 31 | 9, 11, 18 | ringrz 20216 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 32 | 31 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4498 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 34 | 28, 33 | eqtrid 2780 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 35 | 34 | mpoeq3dv 7433 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| 36 | 14, 27, 35 | 3eqtrd 2772 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4476 {csn 4577 × cxp 5619 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ∘f cof 7616 Fincfn 8877 Basecbs 17124 .rcmulr 17166 ·𝑠 cvsca 17169 0gc0g 17347 1rcur 20103 Ringcrg 20155 Mat cmat 22325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-subrg 20489 df-lmod 20799 df-lss 20869 df-sra 21111 df-rgmod 21112 df-dsmm 21673 df-frlm 21688 df-mamu 22309 df-mat 22326 |
| This theorem is referenced by: scmatscm 22431 madurid 22562 chmatval 22747 |
| Copyright terms: Public domain | W3C validator |