![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matsc | Structured version Visualization version GIF version |
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
Ref | Expression |
---|---|
matsc.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matsc.k | ⊢ 𝐾 = (Base‘𝑅) |
matsc.m | ⊢ · = ( ·𝑠 ‘𝐴) |
matsc.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
matsc | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1169 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝐿 ∈ 𝐾) | |
2 | 3simpa 1179 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
3 | matsc.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | 3 | matring 20570 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
5 | eqid 2797 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
6 | eqid 2797 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
7 | 5, 6 | ringidcl 18880 | . . . 4 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ (Base‘𝐴)) |
8 | 2, 4, 7 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) ∈ (Base‘𝐴)) |
9 | matsc.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
10 | matsc.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
11 | eqid 2797 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2797 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
13 | 3, 5, 9, 10, 11, 12 | matvsca2 20555 | . . 3 ⊢ ((𝐿 ∈ 𝐾 ∧ (1r‘𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r‘𝑅)(1r‘𝐴))) |
14 | 1, 8, 13 | syl2anc 580 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r‘𝑅)(1r‘𝐴))) |
15 | simp1 1167 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝑁 ∈ Fin) | |
16 | simp13 1263 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈ 𝐾) | |
17 | fvex 6422 | . . . . 5 ⊢ (1r‘𝑅) ∈ V | |
18 | matsc.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
19 | 18 | fvexi 6423 | . . . . 5 ⊢ 0 ∈ V |
20 | 17, 19 | ifex 4323 | . . . 4 ⊢ if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V |
21 | 20 | a1i 11 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V) |
22 | fconstmpt2 6987 | . . . 4 ⊢ ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿) | |
23 | 22 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿)) |
24 | eqid 2797 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | 3, 24, 18 | mat1 20575 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
26 | 25 | 3adant3 1163 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
27 | 15, 15, 16, 21, 23, 26 | offval22 7488 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘𝑓 (.r‘𝑅)(1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )))) |
28 | ovif2 6970 | . . . 4 ⊢ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) | |
29 | 9, 11, 24 | ringridm 18884 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
30 | 29 | 3adant1 1161 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
31 | 9, 11, 18 | ringrz 18900 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
32 | 31 | 3adant1 1161 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
33 | 30, 32 | ifeq12d 4295 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
34 | 28, 33 | syl5eq 2843 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
35 | 34 | mpt2eq3dv 6953 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
36 | 14, 27, 35 | 3eqtrd 2835 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ifcif 4275 {csn 4366 × cxp 5308 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 ∘𝑓 cof 7127 Fincfn 8193 Basecbs 16180 .rcmulr 16264 ·𝑠 cvsca 16267 0gc0g 16411 1rcur 18813 Ringcrg 18859 Mat cmat 20534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16182 df-ndx 16183 df-slot 16184 df-base 16186 df-sets 16187 df-ress 16188 df-plusg 16276 df-mulr 16277 df-sca 16279 df-vsca 16280 df-ip 16281 df-tset 16282 df-ple 16283 df-ds 16285 df-hom 16287 df-cco 16288 df-0g 16413 df-gsum 16414 df-prds 16419 df-pws 16421 df-mre 16557 df-mrc 16558 df-acs 16560 df-mgm 17553 df-sgrp 17595 df-mnd 17606 df-mhm 17646 df-submnd 17647 df-grp 17737 df-minusg 17738 df-sbg 17739 df-mulg 17853 df-subg 17900 df-ghm 17967 df-cntz 18058 df-cmn 18506 df-abl 18507 df-mgp 18802 df-ur 18814 df-ring 18861 df-subrg 19092 df-lmod 19179 df-lss 19247 df-sra 19491 df-rgmod 19492 df-dsmm 20397 df-frlm 20412 df-mamu 20511 df-mat 20535 |
This theorem is referenced by: scmatscm 20641 madurid 20772 chmatval 20958 |
Copyright terms: Public domain | W3C validator |