| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matsc | Structured version Visualization version GIF version | ||
| Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| matsc.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matsc.k | ⊢ 𝐾 = (Base‘𝑅) |
| matsc.m | ⊢ · = ( ·𝑠 ‘𝐴) |
| matsc.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| matsc | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝐿 ∈ 𝐾) | |
| 2 | 3simpa 1148 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
| 3 | matsc.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | 3 | matring 22337 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 5 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 7 | 5, 6 | ringidcl 20181 | . . . 4 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 8 | 2, 4, 7 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 9 | matsc.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | matsc.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 11 | eqid 2730 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | eqid 2730 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 13 | 3, 5, 9, 10, 11, 12 | matvsca2 22322 | . . 3 ⊢ ((𝐿 ∈ 𝐾 ∧ (1r‘𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 14 | 1, 8, 13 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 15 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝑁 ∈ Fin) | |
| 16 | simp13 1206 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈ 𝐾) | |
| 17 | fvex 6874 | . . . . 5 ⊢ (1r‘𝑅) ∈ V | |
| 18 | matsc.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 19 | 18 | fvexi 6875 | . . . . 5 ⊢ 0 ∈ V |
| 20 | 17, 19 | ifex 4542 | . . . 4 ⊢ if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V) |
| 22 | fconstmpo 7509 | . . . 4 ⊢ ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿) | |
| 23 | 22 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿)) |
| 24 | eqid 2730 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | 3, 24, 18 | mat1 22341 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 26 | 25 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 27 | 15, 15, 16, 21, 23, 26 | offval22 8070 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )))) |
| 28 | ovif2 7491 | . . . 4 ⊢ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) | |
| 29 | 9, 11, 24 | ringridm 20186 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 30 | 29 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 31 | 9, 11, 18 | ringrz 20210 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 32 | 31 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4513 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 34 | 28, 33 | eqtrid 2777 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 35 | 34 | mpoeq3dv 7471 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| 36 | 14, 27, 35 | 3eqtrd 2769 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ∘f cof 7654 Fincfn 8921 Basecbs 17186 .rcmulr 17228 ·𝑠 cvsca 17231 0gc0g 17409 1rcur 20097 Ringcrg 20149 Mat cmat 22301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-mamu 22285 df-mat 22302 |
| This theorem is referenced by: scmatscm 22407 madurid 22538 chmatval 22723 |
| Copyright terms: Public domain | W3C validator |