| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matsc | Structured version Visualization version GIF version | ||
| Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| matsc.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matsc.k | ⊢ 𝐾 = (Base‘𝑅) |
| matsc.m | ⊢ · = ( ·𝑠 ‘𝐴) |
| matsc.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| matsc | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝐿 ∈ 𝐾) | |
| 2 | 3simpa 1148 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
| 3 | matsc.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | 3 | matring 22381 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 7 | 5, 6 | ringidcl 20225 | . . . 4 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 8 | 2, 4, 7 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 9 | matsc.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | matsc.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 11 | eqid 2735 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | eqid 2735 | . . . 4 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 13 | 3, 5, 9, 10, 11, 12 | matvsca2 22366 | . . 3 ⊢ ((𝐿 ∈ 𝐾 ∧ (1r‘𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 14 | 1, 8, 13 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴))) |
| 15 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → 𝑁 ∈ Fin) | |
| 16 | simp13 1206 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐿 ∈ 𝐾) | |
| 17 | fvex 6889 | . . . . 5 ⊢ (1r‘𝑅) ∈ V | |
| 18 | matsc.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 19 | 18 | fvexi 6890 | . . . . 5 ⊢ 0 ∈ V |
| 20 | 17, 19 | ifex 4551 | . . . 4 ⊢ if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), 0 ) ∈ V) |
| 22 | fconstmpo 7524 | . . . 4 ⊢ ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿) | |
| 23 | 22 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐿)) |
| 24 | eqid 2735 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | 3, 24, 18 | mat1 22385 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 26 | 25 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) |
| 27 | 15, 15, 16, 21, 23, 26 | offval22 8087 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘f (.r‘𝑅)(1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )))) |
| 28 | ovif2 7506 | . . . 4 ⊢ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) | |
| 29 | 9, 11, 24 | ringridm 20230 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 30 | 29 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)(1r‘𝑅)) = 𝐿) |
| 31 | 9, 11, 18 | ringrz 20254 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 32 | 31 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4522 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → if(𝑖 = 𝑗, (𝐿(.r‘𝑅)(1r‘𝑅)), (𝐿(.r‘𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 34 | 28, 33 | eqtrid 2782 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 )) |
| 35 | 34 | mpoeq3dv 7486 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐿(.r‘𝑅)if(𝑖 = 𝑗, (1r‘𝑅), 0 ))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| 36 | 14, 27, 35 | 3eqtrd 2774 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ifcif 4500 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ∘f cof 7669 Fincfn 8959 Basecbs 17228 .rcmulr 17272 ·𝑠 cvsca 17275 0gc0g 17453 1rcur 20141 Ringcrg 20193 Mat cmat 22345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-subrg 20530 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-mamu 22329 df-mat 22346 |
| This theorem is referenced by: scmatscm 22451 madurid 22582 chmatval 22767 |
| Copyright terms: Public domain | W3C validator |