MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsc Structured version   Visualization version   GIF version

Theorem matsc 22368
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
matsc.a 𝐴 = (𝑁 Mat 𝑅)
matsc.k 𝐾 = (Base‘𝑅)
matsc.m · = ( ·𝑠𝐴)
matsc.z 0 = (0g𝑅)
Assertion
Ref Expression
matsc ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Distinct variable groups:   𝑖,𝑗, 0   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   · ,𝑖,𝑗   𝑖,𝐿,𝑗   𝑖,𝐾,𝑗

Proof of Theorem matsc
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝐿𝐾)
2 3simpa 1148 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3 matsc.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 22361 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 eqid 2733 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 eqid 2733 . . . . 5 (1r𝐴) = (1r𝐴)
75, 6ringidcl 20187 . . . 4 (𝐴 ∈ Ring → (1r𝐴) ∈ (Base‘𝐴))
82, 4, 73syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) ∈ (Base‘𝐴))
9 matsc.k . . . 4 𝐾 = (Base‘𝑅)
10 matsc.m . . . 4 · = ( ·𝑠𝐴)
11 eqid 2733 . . . 4 (.r𝑅) = (.r𝑅)
12 eqid 2733 . . . 4 (𝑁 × 𝑁) = (𝑁 × 𝑁)
133, 5, 9, 10, 11, 12matvsca2 22346 . . 3 ((𝐿𝐾 ∧ (1r𝐴) ∈ (Base‘𝐴)) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)))
141, 8, 13syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)))
15 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → 𝑁 ∈ Fin)
16 simp13 1206 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → 𝐿𝐾)
17 fvex 6843 . . . . 5 (1r𝑅) ∈ V
18 matsc.z . . . . . 6 0 = (0g𝑅)
1918fvexi 6844 . . . . 5 0 ∈ V
2017, 19ifex 4527 . . . 4 if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V
2120a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), 0 ) ∈ V)
22 fconstmpo 7471 . . . 4 ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿)
2322a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → ((𝑁 × 𝑁) × {𝐿}) = (𝑖𝑁, 𝑗𝑁𝐿))
24 eqid 2733 . . . . 5 (1r𝑅) = (1r𝑅)
253, 24, 18mat1 22365 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
26253adant3 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (1r𝑅), 0 )))
2715, 15, 16, 21, 23, 26offval22 8026 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (((𝑁 × 𝑁) × {𝐿}) ∘f (.r𝑅)(1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))))
28 ovif2 7453 . . . 4 (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 ))
299, 11, 24ringridm 20192 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
30293adant1 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)(1r𝑅)) = 𝐿)
319, 11, 18ringrz 20216 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
32313adant1 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4498 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → if(𝑖 = 𝑗, (𝐿(.r𝑅)(1r𝑅)), (𝐿(.r𝑅) 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3428, 33eqtrid 2780 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 )) = if(𝑖 = 𝑗, 𝐿, 0 ))
3534mpoeq3dv 7433 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝑖𝑁, 𝑗𝑁 ↦ (𝐿(.r𝑅)if(𝑖 = 𝑗, (1r𝑅), 0 ))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
3614, 27, 353eqtrd 2772 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿𝐾) → (𝐿 · (1r𝐴)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4476  {csn 4577   × cxp 5619  cfv 6488  (class class class)co 7354  cmpo 7356  f cof 7616  Fincfn 8877  Basecbs 17124  .rcmulr 17166   ·𝑠 cvsca 17169  0gc0g 17347  1rcur 20103  Ringcrg 20155   Mat cmat 22325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-subrg 20489  df-lmod 20799  df-lss 20869  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-mamu 22309  df-mat 22326
This theorem is referenced by:  scmatscm  22431  madurid  22562  chmatval  22747
  Copyright terms: Public domain W3C validator