MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrfvb2 Structured version   Visualization version   GIF version

Theorem fnbrfvb2 6947
Description: Version of fnbrfvb 6943 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7460 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnbrfvb2 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))

Proof of Theorem fnbrfvb2
StepHypRef Expression
1 opelxpi 5712 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑊))
2 fnbrfvb 6943 . 2 ((𝐹 Fn (𝑉 × 𝑊) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
31, 2sylan2 591 1 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cop 4633   class class class wbr 5147   × cxp 5673   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  fnbrovb  7460
  Copyright terms: Public domain W3C validator