![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnbrfvb2 | Structured version Visualization version GIF version |
Description: Version of fnbrfvb 6546 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7023 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.) |
Ref | Expression |
---|---|
fnbrfvb2 | ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5441 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑊)) | |
2 | fnbrfvb 6546 | . 2 ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) | |
3 | 1, 2 | sylan2 584 | 1 ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 〈cop 4442 class class class wbr 4926 × cxp 5402 Fn wfn 6181 ‘cfv 6186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-iota 6150 df-fun 6188 df-fn 6189 df-fv 6194 |
This theorem is referenced by: fnbrovb 7023 |
Copyright terms: Public domain | W3C validator |