MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrfvb2 Structured version   Visualization version   GIF version

Theorem fnbrfvb2 6808
Description: Version of fnbrfvb 6804 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7304 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnbrfvb2 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))

Proof of Theorem fnbrfvb2
StepHypRef Expression
1 opelxpi 5617 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑊))
2 fnbrfvb 6804 . 2 ((𝐹 Fn (𝑉 × 𝑊) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
31, 2sylan2 592 1 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070   × cxp 5578   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  fnbrovb  7304
  Copyright terms: Public domain W3C validator