Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnbrfvb2 | Structured version Visualization version GIF version |
Description: Version of fnbrfvb 6707 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7200 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.) |
Ref | Expression |
---|---|
fnbrfvb2 | ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5562 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑊)) | |
2 | fnbrfvb 6707 | . 2 ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) | |
3 | 1, 2 | sylan2 596 | 1 ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 〈cop 4529 class class class wbr 5033 × cxp 5523 Fn wfn 6331 ‘cfv 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fn 6339 df-fv 6344 |
This theorem is referenced by: fnbrovb 7200 |
Copyright terms: Public domain | W3C validator |