| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funbrfv2b | Structured version Visualization version GIF version | ||
| Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| Ref | Expression |
|---|---|
| funbrfv2b | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6558 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | releldm 5929 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
| 5 | 4 | pm4.71rd 562 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
| 6 | funbrfvb 6937 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
| 7 | 6 | pm5.32da 579 | . 2 ⊢ (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
| 8 | 5, 7 | bitr4d 282 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 dom cdm 5659 Rel wrel 5664 Fun wfun 6530 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: brtpos2 8236 mpocurryd 8273 xpcomco 9081 fseqenlem2 10044 fpwwe2 10662 joinfval 18388 joinfval2 18389 meetfval 18402 meetfval2 18403 tayl0 26326 ofpreima 32648 funcnvmpt 32650 curf 37627 uncf 37628 curunc 37631 fperdvper 45915 |
| Copyright terms: Public domain | W3C validator |