| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funbrfv2b | Structured version Visualization version GIF version | ||
| Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| Ref | Expression |
|---|---|
| funbrfv2b | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6506 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | releldm 5890 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
| 5 | 4 | pm4.71rd 562 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
| 6 | funbrfvb 6884 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
| 7 | 6 | pm5.32da 579 | . 2 ⊢ (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
| 8 | 5, 7 | bitr4d 282 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 dom cdm 5621 Rel wrel 5626 Fun wfun 6483 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: brtpos2 8171 mpocurryd 8208 xpcomco 8991 fseqenlem2 9927 fpwwe2 10545 joinfval 18285 joinfval2 18286 meetfval 18299 meetfval2 18300 tayl0 26316 ofpreima 32669 funcnvmpt 32671 curf 37711 uncf 37712 curunc 37715 fperdvper 46079 |
| Copyright terms: Public domain | W3C validator |