MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv2b Structured version   Visualization version   GIF version

Theorem funbrfv2b 6979
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 6595 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5969 . . . . 5 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
32ex 412 . . . 4 (Rel 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
41, 3syl 17 . . 3 (Fun 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
54pm4.71rd 562 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
6 funbrfvb 6975 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
76pm5.32da 578 . 2 (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
85, 7bitr4d 282 1 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  Rel wrel 5705  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  brtpos2  8273  mpocurryd  8310  xpcomco  9128  fseqenlem2  10094  fpwwe2  10712  joinfval  18443  joinfval2  18444  meetfval  18457  meetfval2  18458  tayl0  26421  ofpreima  32683  funcnvmpt  32685  curf  37558  uncf  37559  curunc  37562  fperdvper  45840
  Copyright terms: Public domain W3C validator