MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv2b Structured version   Visualization version   GIF version

Theorem funbrfv2b 6809
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 6435 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5842 . . . . 5 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
32ex 412 . . . 4 (Rel 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
41, 3syl 17 . . 3 (Fun 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
54pm4.71rd 562 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
6 funbrfvb 6806 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
76pm5.32da 578 . 2 (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
85, 7bitr4d 281 1 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  brtpos2  8019  mpocurryd  8056  xpcomco  8802  fseqenlem2  9712  fpwwe2  10330  joinfval  18006  joinfval2  18007  meetfval  18020  meetfval2  18021  tayl0  25426  ofpreima  30904  funcnvmpt  30906  curf  35682  uncf  35683  curunc  35686  fperdvper  43350
  Copyright terms: Public domain W3C validator