MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrovb Structured version   Visualization version   GIF version

Theorem fnbrovb 7407
Description: Value of a binary operation expressed as a binary relation. See also fnbrfvb 6896 for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnbrovb ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))

Proof of Theorem fnbrovb
StepHypRef Expression
1 df-ov 7361 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21eqeq1i 2742 . 2 ((𝐴𝐹𝐵) = 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) = 𝐶)
3 fnbrfvb2 6900 . 2 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
42, 3bitrid 283 1 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cop 4593   class class class wbr 5106   × cxp 5632   Fn wfn 6492  cfv 6497  (class class class)co 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505  df-ov 7361
This theorem is referenced by:  fnotovb  7408
  Copyright terms: Public domain W3C validator