MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrovb Structured version   Visualization version   GIF version

Theorem fnbrovb 7499
Description: Value of a binary operation expressed as a binary relation. See also fnbrfvb 6973 for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnbrovb ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))

Proof of Theorem fnbrovb
StepHypRef Expression
1 df-ov 7451 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21eqeq1i 2745 . 2 ((𝐴𝐹𝐵) = 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) = 𝐶)
3 fnbrfvb2 6977 . 2 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
42, 3bitrid 283 1 ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166   × cxp 5698   Fn wfn 6568  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451
This theorem is referenced by:  fnotovb  7500
  Copyright terms: Public domain W3C validator