MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifcom Structured version   Visualization version   GIF version

Theorem fndmdifcom 6822
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))

Proof of Theorem fndmdifcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 necom 2987 . . 3 ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐺𝑥) ≠ (𝐹𝑥))
21rabbii 3374 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)}
3 fndmdif 6821 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
4 fndmdif 6821 . . 3 ((𝐺 Fn 𝐴𝐹 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
54ancoms 462 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
62, 3, 53eqtr4a 2799 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wne 2934  {crab 3057  cdif 3840  dom cdm 5525   Fn wfn 6334  cfv 6339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fn 6342  df-fv 6347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator