MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifcom Structured version   Visualization version   GIF version

Theorem fndmdifcom 7044
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))

Proof of Theorem fndmdifcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 necom 2994 . . 3 ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐺𝑥) ≠ (𝐹𝑥))
21rabbii 3438 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)}
3 fndmdif 7043 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
4 fndmdif 7043 . . 3 ((𝐺 Fn 𝐴𝐹 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
54ancoms 459 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
62, 3, 53eqtr4a 2798 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wne 2940  {crab 3432  cdif 3945  dom cdm 5676   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator