Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmdifcom | Structured version Visualization version GIF version |
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmdifcom | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = dom (𝐺 ∖ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necom 2987 | . . 3 ⊢ ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐺‘𝑥) ≠ (𝐹‘𝑥)) | |
2 | 1 | rabbii 3374 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)} |
3 | fndmdif 6821 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | |
4 | fndmdif 6821 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴) → dom (𝐺 ∖ 𝐹) = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)}) | |
5 | 4 | ancoms 462 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐺 ∖ 𝐹) = {𝑥 ∈ 𝐴 ∣ (𝐺‘𝑥) ≠ (𝐹‘𝑥)}) |
6 | 2, 3, 5 | 3eqtr4a 2799 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = dom (𝐺 ∖ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ≠ wne 2934 {crab 3057 ∖ cdif 3840 dom cdm 5525 Fn wfn 6334 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fn 6342 df-fv 6347 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |