MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifcom Structured version   Visualization version   GIF version

Theorem fndmdifcom 7062
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))

Proof of Theorem fndmdifcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 necom 2991 . . 3 ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐺𝑥) ≠ (𝐹𝑥))
21rabbii 3438 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)}
3 fndmdif 7061 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
4 fndmdif 7061 . . 3 ((𝐺 Fn 𝐴𝐹 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
54ancoms 458 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐺𝐹) = {𝑥𝐴 ∣ (𝐺𝑥) ≠ (𝐹𝑥)})
62, 3, 53eqtr4a 2800 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wne 2937  {crab 3432  cdif 3959  dom cdm 5688   Fn wfn 6557  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator