MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifeq0 Structured version   Visualization version   GIF version

Theorem fndmdifeq0 6978
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifeq0 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))

Proof of Theorem fndmdifeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndmdif 6976 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
21eqeq1d 2731 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅))
3 rabeq0 4339 . . . 4 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥))
4 nne 2929 . . . . 5 (¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥))
54ralbii 3075 . . . 4 (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
63, 5bitri 275 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
7 eqfnfv 6965 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
86, 7bitr4id 290 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ 𝐹 = 𝐺))
92, 8bitrd 279 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wral 3044  {crab 3394  cdif 3900  c0 4284  dom cdm 5619   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  wemapso  9443  wemapso2lem  9444
  Copyright terms: Public domain W3C validator