MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifeq0 Structured version   Visualization version   GIF version

Theorem fndmdifeq0 7064
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifeq0 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))

Proof of Theorem fndmdifeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndmdif 7062 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
21eqeq1d 2739 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅))
3 rabeq0 4388 . . . 4 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥))
4 nne 2944 . . . . 5 (¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥))
54ralbii 3093 . . . 4 (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
63, 5bitri 275 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
7 eqfnfv 7051 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
86, 7bitr4id 290 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ 𝐹 = 𝐺))
92, 8bitrd 279 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2940  wral 3061  {crab 3436  cdif 3948  c0 4333  dom cdm 5685   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  wemapso  9591  wemapso2lem  9592
  Copyright terms: Public domain W3C validator