![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmdifeq0 | Structured version Visualization version GIF version |
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmdifeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ 𝐹 = 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmdif 6547 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | |
2 | 1 | eqeq1d 2801 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅)) |
3 | eqfnfv 6537 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
4 | rabeq0 4157 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥)) | |
5 | nne 2975 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥)) | |
6 | 5 | ralbii 3161 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
7 | 4, 6 | bitri 267 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
8 | 3, 7 | syl6rbbr 282 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ 𝐹 = 𝐺)) |
9 | 2, 8 | bitrd 271 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ 𝐹 = 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ≠ wne 2971 ∀wral 3089 {crab 3093 ∖ cdif 3766 ∅c0 4115 dom cdm 5312 Fn wfn 6096 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 |
This theorem is referenced by: wemapso 8698 wemapso2lem 8699 |
Copyright terms: Public domain | W3C validator |