![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmdifeq0 | Structured version Visualization version GIF version |
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmdifeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ 𝐹 = 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmdif 7061 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | |
2 | 1 | eqeq1d 2736 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅)) |
3 | rabeq0 4393 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥)) | |
4 | nne 2941 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥)) | |
5 | 4 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
7 | eqfnfv 7050 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | bitr4id 290 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)} = ∅ ↔ 𝐹 = 𝐺)) |
9 | 2, 8 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∖ 𝐺) = ∅ ↔ 𝐹 = 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ≠ wne 2937 ∀wral 3058 {crab 3432 ∖ cdif 3959 ∅c0 4338 dom cdm 5688 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: wemapso 9588 wemapso2lem 9589 |
Copyright terms: Public domain | W3C validator |