MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifeq0 Structured version   Visualization version   GIF version

Theorem fndmdifeq0 6903
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifeq0 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))

Proof of Theorem fndmdifeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndmdif 6901 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
21eqeq1d 2740 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅))
3 rabeq0 4315 . . . 4 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥))
4 nne 2946 . . . . 5 (¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥))
54ralbii 3090 . . . 4 (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
63, 5bitri 274 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
7 eqfnfv 6891 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
86, 7bitr4id 289 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)} = ∅ ↔ 𝐹 = 𝐺))
92, 8bitrd 278 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = ∅ ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wne 2942  wral 3063  {crab 3067  cdif 3880  c0 4253  dom cdm 5580   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  wemapso  9240  wemapso2lem  9241
  Copyright terms: Public domain W3C validator