MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopab Structured version   Visualization version   GIF version

Theorem fnopab 6693
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
Hypotheses
Ref Expression
fnopab.1 (𝑥𝐴 → ∃!𝑦𝜑)
fnopab.2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopab 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopab
StepHypRef Expression
1 fnopab.1 . . 3 (𝑥𝐴 → ∃!𝑦𝜑)
21rgen 3060 . 2 𝑥𝐴 ∃!𝑦𝜑
3 fnopab.2 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
43fnopabg 6692 . 2 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
52, 4mpbi 229 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  ∃!weu 2558  wral 3058  {copab 5210   Fn wfn 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-fun 6550  df-fn 6551
This theorem is referenced by:  fvopab3g  7000
  Copyright terms: Public domain W3C validator