| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnopab | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.) |
| Ref | Expression |
|---|---|
| fnopab.1 | ⊢ (𝑥 ∈ 𝐴 → ∃!𝑦𝜑) |
| fnopab.2 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fnopab | ⊢ 𝐹 Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopab.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃!𝑦𝜑) | |
| 2 | 1 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 |
| 3 | fnopab.2 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | fnopabg 6624 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹 Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 ∀wral 3047 {copab 5155 Fn wfn 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6489 df-fn 6490 |
| This theorem is referenced by: fvopab3g 6930 |
| Copyright terms: Public domain | W3C validator |