MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopab Structured version   Visualization version   GIF version

Theorem fnopab 6679
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
Hypotheses
Ref Expression
fnopab.1 (𝑥𝐴 → ∃!𝑦𝜑)
fnopab.2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopab 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopab
StepHypRef Expression
1 fnopab.1 . . 3 (𝑥𝐴 → ∃!𝑦𝜑)
21rgen 3055 . 2 𝑥𝐴 ∃!𝑦𝜑
3 fnopab.2 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
43fnopabg 6678 . 2 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
52, 4mpbi 229 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  ∃!weu 2554  wral 3053  {copab 5201   Fn wfn 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-fun 6536  df-fn 6537
This theorem is referenced by:  fvopab3g  6984
  Copyright terms: Public domain W3C validator