MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3g Structured version   Visualization version   GIF version

Theorem fvopab3g 6966
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
fvopab3g.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3g.3 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3g.4 (𝑥𝐶 → ∃!𝑦𝜑)
fvopab3g.5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3g ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3g
StepHypRef Expression
1 eleq1 2817 . . . 4 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3g.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3g.3 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 630 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 5501 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
7 fvopab3g.4 . . . . . 6 (𝑥𝐶 → ∃!𝑦𝜑)
8 fvopab3g.5 . . . . . 6 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
97, 8fnopab 6659 . . . . 5 𝐹 Fn 𝐶
10 fnopfvb 6915 . . . . 5 ((𝐹 Fn 𝐶𝐴𝐶) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
119, 10mpan 690 . . . 4 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
128eleq2i 2821 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
1311, 12bitrdi 287 . . 3 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
1413adantr 480 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
15 ibar 528 . . 3 (𝐴𝐶 → (𝜒 ↔ (𝐴𝐶𝜒)))
1615adantr 480 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 ↔ (𝐴𝐶𝜒)))
176, 14, 163bitr4d 311 1 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  cop 4598  {copab 5172   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  recmulnq  10924
  Copyright terms: Public domain W3C validator