MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3g Structured version   Visualization version   GIF version

Theorem fvopab3g 6993
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
fvopab3g.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3g.3 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3g.4 (𝑥𝐶 → ∃!𝑦𝜑)
fvopab3g.5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3g ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3g
StepHypRef Expression
1 eleq1 2820 . . . 4 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3g.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 630 . . 3 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3g.3 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 628 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 5538 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
7 fvopab3g.4 . . . . . 6 (𝑥𝐶 → ∃!𝑦𝜑)
8 fvopab3g.5 . . . . . 6 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
97, 8fnopab 6688 . . . . 5 𝐹 Fn 𝐶
10 fnopfvb 6945 . . . . 5 ((𝐹 Fn 𝐶𝐴𝐶) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
119, 10mpan 687 . . . 4 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
128eleq2i 2824 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
1311, 12bitrdi 287 . . 3 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
1413adantr 480 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
15 ibar 528 . . 3 (𝐴𝐶 → (𝜒 ↔ (𝐴𝐶𝜒)))
1615adantr 480 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 ↔ (𝐴𝐶𝜒)))
176, 14, 163bitr4d 311 1 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  ∃!weu 2561  cop 4634  {copab 5210   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  recmulnq  10963
  Copyright terms: Public domain W3C validator