![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab3g | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvopab3g.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3g.3 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3g.4 | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) |
fvopab3g.5 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2847 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3g.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 624 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3g.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 622 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 5232 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | fvopab3g.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) | |
8 | fvopab3g.5 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
9 | 7, 8 | fnopab 6266 | . . . . 5 ⊢ 𝐹 Fn 𝐶 |
10 | fnopfvb 6498 | . . . . 5 ⊢ ((𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | |
11 | 9, 10 | mpan 680 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
12 | 8 | eleq2i 2851 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
13 | 11, 12 | syl6bb 279 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
14 | 13 | adantr 474 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
15 | ibar 524 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) | |
16 | 15 | adantr 474 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
17 | 6, 14, 16 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃!weu 2586 〈cop 4404 {copab 4950 Fn wfn 6132 ‘cfv 6137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fn 6140 df-fv 6145 |
This theorem is referenced by: recmulnq 10123 |
Copyright terms: Public domain | W3C validator |