![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab3g | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fvopab3g.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3g.3 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3g.4 | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) |
fvopab3g.5 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3g.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3g.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 629 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 5534 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | fvopab3g.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦𝜑) | |
8 | fvopab3g.5 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
9 | 7, 8 | fnopab 6687 | . . . . 5 ⊢ 𝐹 Fn 𝐶 |
10 | fnopfvb 6945 | . . . . 5 ⊢ ((𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | |
11 | 9, 10 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
12 | 8 | eleq2i 2821 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
15 | ibar 528 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) | |
16 | 15 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
17 | 6, 14, 16 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹‘𝐴) = 𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃!weu 2558 〈cop 4630 {copab 5204 Fn wfn 6537 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: recmulnq 10981 |
Copyright terms: Public domain | W3C validator |