![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnopabg | Structured version Visualization version GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fnopabg.1 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fnopabg | ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanimv 2609 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
2 | 1 | albii 1813 | . . . . 5 ⊢ (∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) |
3 | funopab 6576 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-ral 3056 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 304 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
6 | dmopab3 5912 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | |
7 | 5, 6 | anbi12i 626 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) |
8 | r19.26 3105 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑)) | |
9 | df-fn 6539 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
11 | df-eu 2557 | . . . 4 ⊢ (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑)) | |
12 | 11 | biancomi 462 | . . 3 ⊢ (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
13 | 12 | ralbii 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
14 | fnopabg.1 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
15 | 14 | fneq1i 6639 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
16 | 10, 13, 15 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃*wmo 2526 ∃!weu 2556 ∀wral 3055 {copab 5203 dom cdm 5669 Fun wfun 6530 Fn wfn 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-fun 6538 df-fn 6539 |
This theorem is referenced by: fnopab 6681 mptfng 6682 axcontlem2 28726 tfsconcatfn 42646 tfsconcatfv1 42647 tfsconcatfv2 42648 |
Copyright terms: Public domain | W3C validator |