![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnopabg | Structured version Visualization version GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fnopabg.1 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fnopabg | ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanimv 2610 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
2 | 1 | albii 1813 | . . . . 5 ⊢ (∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) |
3 | funopab 6593 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-ral 3059 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 303 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
6 | dmopab3 5926 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | |
7 | 5, 6 | anbi12i 626 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) |
8 | r19.26 3108 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑)) | |
9 | df-fn 6556 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
11 | df-eu 2558 | . . . 4 ⊢ (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑)) | |
12 | 11 | biancomi 461 | . . 3 ⊢ (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
13 | 12 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
14 | fnopabg.1 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
15 | 14 | fneq1i 6656 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
16 | 10, 13, 15 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃*wmo 2527 ∃!weu 2557 ∀wral 3058 {copab 5214 dom cdm 5682 Fun wfun 6547 Fn wfn 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-fun 6555 df-fn 6556 |
This theorem is referenced by: fnopab 6698 mptfng 6699 axcontlem2 28796 tfsconcatfn 42798 tfsconcatfv1 42799 tfsconcatfv2 42800 |
Copyright terms: Public domain | W3C validator |