MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopabg Structured version   Visualization version   GIF version

Theorem fnopabg 6313
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopabg (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2654 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
21albii 1783 . . . . 5 (∀𝑥∃*𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
3 funopab 6221 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
4 df-ral 3088 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
52, 3, 43bitr4ri 296 . . . 4 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
6 dmopab3 5633 . . . 4 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
75, 6anbi12i 618 . . 3 ((∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
8 r19.26 3115 . . 3 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑))
9 df-fn 6189 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
107, 8, 93bitr4i 295 . 2 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
11 df-eu 2585 . . . 4 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
1211biancomi 455 . . 3 (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1312ralbii 3110 . 2 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ ∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
14 fnopabg.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
1514fneq1i 6281 . 2 (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
1610, 13, 153bitr4i 295 1 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1506   = wceq 1508  wex 1743  wcel 2051  ∃*wmo 2546  ∃!weu 2584  wral 3083  {copab 4988  dom cdm 5404  Fun wfun 6180   Fn wfn 6181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rab 3092  df-v 3412  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-br 4927  df-opab 4989  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-fun 6188  df-fn 6189
This theorem is referenced by:  fnopab  6314  mptfng  6315  axcontlem2  26470
  Copyright terms: Public domain W3C validator