MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopabg Structured version   Visualization version   GIF version

Theorem fnopabg 6570
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopabg (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2621 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
21albii 1822 . . . . 5 (∀𝑥∃*𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
3 funopab 6469 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
4 df-ral 3069 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
52, 3, 43bitr4ri 304 . . . 4 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
6 dmopab3 5828 . . . 4 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
75, 6anbi12i 627 . . 3 ((∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
8 r19.26 3095 . . 3 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑))
9 df-fn 6436 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
107, 8, 93bitr4i 303 . 2 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
11 df-eu 2569 . . . 4 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
1211biancomi 463 . . 3 (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1312ralbii 3092 . 2 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ ∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
14 fnopabg.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
1514fneq1i 6530 . 2 (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
1610, 13, 153bitr4i 303 1 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  wral 3064  {copab 5136  dom cdm 5589  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436
This theorem is referenced by:  fnopab  6571  mptfng  6572  axcontlem2  27333
  Copyright terms: Public domain W3C validator