MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi2 Structured version   Visualization version   GIF version

Theorem fcoi2 6705
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 6492 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 cores 6203 . . 3 (ran 𝐹𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹))
3 fnrel 6590 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
4 coi2 6218 . . . 4 (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹)
53, 4syl 17 . . 3 (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹)
62, 5sylan9eqr 2790 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
71, 6sylbi 217 1 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wss 3898   I cid 5515  ran crn 5622  cres 5623  ccom 5625  Rel wrel 5626   Fn wfn 6483  wf 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-fun 6490  df-fn 6491  df-f 6492
This theorem is referenced by:  fcof1oinvd  7235  mapen  9063  mapfien  9301  hashfacen  14365  cofulid  17801  setccatid  17995  estrccatid  18042  efmndid  18800  efmndmnd  18801  symggrp  19316  f1omvdco2  19364  symggen  19386  psgnunilem1  19409  gsumval3  19823  gsumzf1o  19828  frgpcyg  21514  f1linds  21766  qtophmeo  23735  motgrp  28524  hoico2  31741  fcoinver  32588  fcobij  32709  fcobijfs2  32711  symgfcoeu  33060  symgcom  33061  pmtrcnel2  33068  cycpmconjs  33134  subfacp1lem5  35251  ltrncoidN  40250  trlcoat  40845  trlcone  40850  cdlemg47a  40856  cdlemg47  40858  trljco  40862  tgrpgrplem  40871  tendo1mul  40892  tendo0pl  40913  cdlemkid2  41046  cdlemk45  41069  cdlemk53b  41078  erng1r  41117  tendocnv  41143  dvalveclem  41147  dva0g  41149  dvhgrp  41229  dvhlveclem  41230  dvh0g  41233  cdlemn8  41326  dihordlem7b  41337  dihopelvalcpre  41370  aks6d1c6lem5  42293  mendring  43308  rngccatidALTV  48399  ringccatidALTV  48433
  Copyright terms: Public domain W3C validator