MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi2 Structured version   Visualization version   GIF version

Theorem fcoi2 6796
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 6577 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 cores 6280 . . 3 (ran 𝐹𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹))
3 fnrel 6681 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
4 coi2 6294 . . . 4 (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹)
53, 4syl 17 . . 3 (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹)
62, 5sylan9eqr 2802 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
71, 6sylbi 217 1 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976   I cid 5592  ran crn 5701  cres 5702  ccom 5704  Rel wrel 5705   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fcof1oinvd  7329  mapen  9207  mapfien  9477  hashfacen  14503  cofulid  17954  setccatid  18151  estrccatid  18200  efmndid  18923  efmndmnd  18924  symggrp  19442  f1omvdco2  19490  symggen  19512  psgnunilem1  19535  gsumval3  19949  gsumzf1o  19954  frgpcyg  21615  f1linds  21868  qtophmeo  23846  motgrp  28569  hoico2  31789  fcoinver  32626  fcobij  32736  symgfcoeu  33075  symgcom  33076  pmtrcnel2  33083  cycpmconjs  33149  subfacp1lem5  35152  ltrncoidN  40085  trlcoat  40680  trlcone  40685  cdlemg47a  40691  cdlemg47  40693  trljco  40697  tgrpgrplem  40706  tendo1mul  40727  tendo0pl  40748  cdlemkid2  40881  cdlemk45  40904  cdlemk53b  40913  erng1r  40952  tendocnv  40978  dvalveclem  40982  dva0g  40984  dvhgrp  41064  dvhlveclem  41065  dvh0g  41068  cdlemn8  41161  dihordlem7b  41172  dihopelvalcpre  41205  aks6d1c6lem5  42134  mendring  43149  rngccatidALTV  47995  ringccatidALTV  48029
  Copyright terms: Public domain W3C validator