Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6469 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | cores 6174 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
3 | fnrel 6573 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | coi2 6188 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
6 | 2, 5 | sylan9eqr 2798 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ⊆ wss 3896 I cid 5505 ran crn 5608 ↾ cres 5609 ∘ ccom 5611 Rel wrel 5612 Fn wfn 6460 ⟶wf 6461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-fun 6467 df-fn 6468 df-f 6469 |
This theorem is referenced by: fcof1oinvd 7204 mapen 8984 mapfien 9243 hashfacen 14244 hashfacenOLD 14245 cofulid 17679 setccatid 17873 estrccatid 17922 efmndid 18600 efmndmnd 18601 symggrp 19081 f1omvdco2 19129 symggen 19151 psgnunilem1 19174 gsumval3 19580 gsumzf1o 19585 frgpcyg 20861 f1linds 21112 qtophmeo 23048 motgrp 27037 hoico2 30251 fcoinver 31077 fcobij 31188 symgfcoeu 31482 symgcom 31483 pmtrcnel2 31490 cycpmconjs 31554 subfacp1lem5 33281 ltrncoidN 38368 trlcoat 38963 trlcone 38968 cdlemg47a 38974 cdlemg47 38976 trljco 38980 tgrpgrplem 38989 tendo1mul 39010 tendo0pl 39031 cdlemkid2 39164 cdlemk45 39187 cdlemk53b 39196 erng1r 39235 tendocnv 39261 dvalveclem 39265 dva0g 39267 dvhgrp 39347 dvhlveclem 39348 dvh0g 39351 cdlemn8 39444 dihordlem7b 39455 dihopelvalcpre 39488 mendring 41239 rngccatidALTV 45817 ringccatidALTV 45880 |
Copyright terms: Public domain | W3C validator |