![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | cores 6280 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
3 | fnrel 6681 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | coi2 6294 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
6 | 2, 5 | sylan9eqr 2802 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 I cid 5592 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fcof1oinvd 7329 mapen 9207 mapfien 9477 hashfacen 14503 cofulid 17954 setccatid 18151 estrccatid 18200 efmndid 18923 efmndmnd 18924 symggrp 19442 f1omvdco2 19490 symggen 19512 psgnunilem1 19535 gsumval3 19949 gsumzf1o 19954 frgpcyg 21615 f1linds 21868 qtophmeo 23846 motgrp 28569 hoico2 31789 fcoinver 32626 fcobij 32736 symgfcoeu 33075 symgcom 33076 pmtrcnel2 33083 cycpmconjs 33149 subfacp1lem5 35152 ltrncoidN 40085 trlcoat 40680 trlcone 40685 cdlemg47a 40691 cdlemg47 40693 trljco 40697 tgrpgrplem 40706 tendo1mul 40727 tendo0pl 40748 cdlemkid2 40881 cdlemk45 40904 cdlemk53b 40913 erng1r 40952 tendocnv 40978 dvalveclem 40982 dva0g 40984 dvhgrp 41064 dvhlveclem 41065 dvh0g 41068 cdlemn8 41161 dihordlem7b 41172 dihopelvalcpre 41205 aks6d1c6lem5 42134 mendring 43149 rngccatidALTV 47995 ringccatidALTV 48029 |
Copyright terms: Public domain | W3C validator |