| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6490 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6202 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6588 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6216 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2786 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3905 I cid 5517 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fcof1oinvd 7234 mapen 9065 mapfien 9317 hashfacen 14379 cofulid 17815 setccatid 18009 estrccatid 18056 efmndid 18780 efmndmnd 18781 symggrp 19297 f1omvdco2 19345 symggen 19367 psgnunilem1 19390 gsumval3 19804 gsumzf1o 19809 frgpcyg 21498 f1linds 21750 qtophmeo 23720 motgrp 28506 hoico2 31719 fcoinver 32566 fcobij 32678 symgfcoeu 33037 symgcom 33038 pmtrcnel2 33045 cycpmconjs 33111 subfacp1lem5 35156 ltrncoidN 40107 trlcoat 40702 trlcone 40707 cdlemg47a 40713 cdlemg47 40715 trljco 40719 tgrpgrplem 40728 tendo1mul 40749 tendo0pl 40770 cdlemkid2 40903 cdlemk45 40926 cdlemk53b 40935 erng1r 40974 tendocnv 41000 dvalveclem 41004 dva0g 41006 dvhgrp 41086 dvhlveclem 41087 dvh0g 41090 cdlemn8 41183 dihordlem7b 41194 dihopelvalcpre 41227 aks6d1c6lem5 42150 mendring 43161 rngccatidALTV 48257 ringccatidALTV 48291 |
| Copyright terms: Public domain | W3C validator |