Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6437 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | cores 6153 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
3 | fnrel 6535 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | coi2 6167 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
6 | 2, 5 | sylan9eqr 2800 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 I cid 5488 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fcof1oinvd 7165 mapen 8928 mapfien 9167 hashfacen 14166 hashfacenOLD 14167 cofulid 17605 setccatid 17799 estrccatid 17848 efmndid 18527 efmndmnd 18528 symggrp 19008 f1omvdco2 19056 symggen 19078 psgnunilem1 19101 gsumval3 19508 gsumzf1o 19513 frgpcyg 20781 f1linds 21032 qtophmeo 22968 motgrp 26904 hoico2 30119 fcoinver 30946 fcobij 31057 symgfcoeu 31351 symgcom 31352 pmtrcnel2 31359 cycpmconjs 31423 subfacp1lem5 33146 ltrncoidN 38142 trlcoat 38737 trlcone 38742 cdlemg47a 38748 cdlemg47 38750 trljco 38754 tgrpgrplem 38763 tendo1mul 38784 tendo0pl 38805 cdlemkid2 38938 cdlemk45 38961 cdlemk53b 38970 erng1r 39009 tendocnv 39035 dvalveclem 39039 dva0g 39041 dvhgrp 39121 dvhlveclem 39122 dvh0g 39125 cdlemn8 39218 dihordlem7b 39229 dihopelvalcpre 39262 mendring 41017 rngccatidALTV 45547 ringccatidALTV 45610 |
Copyright terms: Public domain | W3C validator |