| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6485 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6196 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6583 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6211 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2788 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3902 I cid 5510 ran crn 5617 ↾ cres 5618 ∘ ccom 5620 Rel wrel 5621 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fcof1oinvd 7227 mapen 9054 mapfien 9292 hashfacen 14361 cofulid 17797 setccatid 17991 estrccatid 18038 efmndid 18796 efmndmnd 18797 symggrp 19313 f1omvdco2 19361 symggen 19383 psgnunilem1 19406 gsumval3 19820 gsumzf1o 19825 frgpcyg 21511 f1linds 21763 qtophmeo 23733 motgrp 28522 hoico2 31735 fcoinver 32582 fcobij 32701 fcobijfs2 32703 symgfcoeu 33049 symgcom 33050 pmtrcnel2 33057 cycpmconjs 33123 subfacp1lem5 35226 ltrncoidN 40173 trlcoat 40768 trlcone 40773 cdlemg47a 40779 cdlemg47 40781 trljco 40785 tgrpgrplem 40794 tendo1mul 40815 tendo0pl 40836 cdlemkid2 40969 cdlemk45 40992 cdlemk53b 41001 erng1r 41040 tendocnv 41066 dvalveclem 41070 dva0g 41072 dvhgrp 41152 dvhlveclem 41153 dvh0g 41156 cdlemn8 41249 dihordlem7b 41260 dihopelvalcpre 41293 aks6d1c6lem5 42216 mendring 43227 rngccatidALTV 48309 ringccatidALTV 48343 |
| Copyright terms: Public domain | W3C validator |