Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | cores 6142 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
3 | fnrel 6519 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | coi2 6156 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
6 | 2, 5 | sylan9eqr 2801 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 I cid 5479 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fcof1oinvd 7145 mapen 8877 mapfien 9097 hashfacen 14094 hashfacenOLD 14095 cofulid 17521 setccatid 17715 estrccatid 17764 efmndid 18442 efmndmnd 18443 symggrp 18923 f1omvdco2 18971 symggen 18993 psgnunilem1 19016 gsumval3 19423 gsumzf1o 19428 frgpcyg 20693 f1linds 20942 qtophmeo 22876 motgrp 26808 hoico2 30020 fcoinver 30847 fcobij 30959 symgfcoeu 31253 symgcom 31254 pmtrcnel2 31261 cycpmconjs 31325 subfacp1lem5 33046 ltrncoidN 38069 trlcoat 38664 trlcone 38669 cdlemg47a 38675 cdlemg47 38677 trljco 38681 tgrpgrplem 38690 tendo1mul 38711 tendo0pl 38732 cdlemkid2 38865 cdlemk45 38888 cdlemk53b 38897 erng1r 38936 tendocnv 38962 dvalveclem 38966 dva0g 38968 dvhgrp 39048 dvhlveclem 39049 dvh0g 39052 cdlemn8 39145 dihordlem7b 39156 dihopelvalcpre 39189 mendring 40933 rngccatidALTV 45435 ringccatidALTV 45498 |
Copyright terms: Public domain | W3C validator |