| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6515 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6222 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6620 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6236 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2786 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 I cid 5532 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fcof1oinvd 7268 mapen 9105 mapfien 9359 hashfacen 14419 cofulid 17852 setccatid 18046 estrccatid 18093 efmndid 18815 efmndmnd 18816 symggrp 19330 f1omvdco2 19378 symggen 19400 psgnunilem1 19423 gsumval3 19837 gsumzf1o 19842 frgpcyg 21483 f1linds 21734 qtophmeo 23704 motgrp 28470 hoico2 31686 fcoinver 32533 fcobij 32645 symgfcoeu 33039 symgcom 33040 pmtrcnel2 33047 cycpmconjs 33113 subfacp1lem5 35171 ltrncoidN 40122 trlcoat 40717 trlcone 40722 cdlemg47a 40728 cdlemg47 40730 trljco 40734 tgrpgrplem 40743 tendo1mul 40764 tendo0pl 40785 cdlemkid2 40918 cdlemk45 40941 cdlemk53b 40950 erng1r 40989 tendocnv 41015 dvalveclem 41019 dva0g 41021 dvhgrp 41101 dvhlveclem 41102 dvh0g 41105 cdlemn8 41198 dihordlem7b 41209 dihopelvalcpre 41242 aks6d1c6lem5 42165 mendring 43177 rngccatidALTV 48260 ringccatidALTV 48294 |
| Copyright terms: Public domain | W3C validator |