| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6534 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6238 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6639 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6252 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2792 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 I cid 5547 ran crn 5655 ↾ cres 5656 ∘ ccom 5658 Rel wrel 5659 Fn wfn 6525 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fcof1oinvd 7285 mapen 9153 mapfien 9418 hashfacen 14470 cofulid 17901 setccatid 18095 estrccatid 18142 efmndid 18864 efmndmnd 18865 symggrp 19379 f1omvdco2 19427 symggen 19449 psgnunilem1 19472 gsumval3 19886 gsumzf1o 19891 frgpcyg 21532 f1linds 21783 qtophmeo 23753 motgrp 28468 hoico2 31684 fcoinver 32531 fcobij 32645 symgfcoeu 33039 symgcom 33040 pmtrcnel2 33047 cycpmconjs 33113 subfacp1lem5 35152 ltrncoidN 40093 trlcoat 40688 trlcone 40693 cdlemg47a 40699 cdlemg47 40701 trljco 40705 tgrpgrplem 40714 tendo1mul 40735 tendo0pl 40756 cdlemkid2 40889 cdlemk45 40912 cdlemk53b 40921 erng1r 40960 tendocnv 40986 dvalveclem 40990 dva0g 40992 dvhgrp 41072 dvhlveclem 41073 dvh0g 41076 cdlemn8 41169 dihordlem7b 41180 dihopelvalcpre 41213 aks6d1c6lem5 42136 mendring 43159 rngccatidALTV 48195 ringccatidALTV 48229 |
| Copyright terms: Public domain | W3C validator |