![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6544 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | cores 6245 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
3 | fnrel 6648 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | coi2 6259 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
6 | 2, 5 | sylan9eqr 2794 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ⊆ wss 3947 I cid 5572 ran crn 5676 ↾ cres 5677 ∘ ccom 5679 Rel wrel 5680 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: fcof1oinvd 7287 mapen 9137 mapfien 9399 hashfacen 14409 hashfacenOLD 14410 cofulid 17836 setccatid 18030 estrccatid 18079 efmndid 18765 efmndmnd 18766 symggrp 19262 f1omvdco2 19310 symggen 19332 psgnunilem1 19355 gsumval3 19769 gsumzf1o 19774 frgpcyg 21120 f1linds 21371 qtophmeo 23312 motgrp 27783 hoico2 30997 fcoinver 31822 fcobij 31934 symgfcoeu 32230 symgcom 32231 pmtrcnel2 32238 cycpmconjs 32302 subfacp1lem5 34163 ltrncoidN 38987 trlcoat 39582 trlcone 39587 cdlemg47a 39593 cdlemg47 39595 trljco 39599 tgrpgrplem 39608 tendo1mul 39629 tendo0pl 39650 cdlemkid2 39783 cdlemk45 39806 cdlemk53b 39815 erng1r 39854 tendocnv 39880 dvalveclem 39884 dva0g 39886 dvhgrp 39966 dvhlveclem 39967 dvh0g 39970 cdlemn8 40063 dihordlem7b 40074 dihopelvalcpre 40107 mendring 41919 rngccatidALTV 46840 ringccatidALTV 46903 |
Copyright terms: Public domain | W3C validator |