| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6518 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6225 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6623 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6239 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2787 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 I cid 5535 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 Rel wrel 5646 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fcof1oinvd 7271 mapen 9111 mapfien 9366 hashfacen 14426 cofulid 17859 setccatid 18053 estrccatid 18100 efmndid 18822 efmndmnd 18823 symggrp 19337 f1omvdco2 19385 symggen 19407 psgnunilem1 19430 gsumval3 19844 gsumzf1o 19849 frgpcyg 21490 f1linds 21741 qtophmeo 23711 motgrp 28477 hoico2 31693 fcoinver 32540 fcobij 32652 symgfcoeu 33046 symgcom 33047 pmtrcnel2 33054 cycpmconjs 33120 subfacp1lem5 35178 ltrncoidN 40129 trlcoat 40724 trlcone 40729 cdlemg47a 40735 cdlemg47 40737 trljco 40741 tgrpgrplem 40750 tendo1mul 40771 tendo0pl 40792 cdlemkid2 40925 cdlemk45 40948 cdlemk53b 40957 erng1r 40996 tendocnv 41022 dvalveclem 41026 dva0g 41028 dvhgrp 41108 dvhlveclem 41109 dvh0g 41112 cdlemn8 41205 dihordlem7b 41216 dihopelvalcpre 41249 aks6d1c6lem5 42172 mendring 43184 rngccatidALTV 48264 ringccatidALTV 48298 |
| Copyright terms: Public domain | W3C validator |