MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi2 Structured version   Visualization version   GIF version

Theorem fcoi2 6649
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 6437 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 cores 6153 . . 3 (ran 𝐹𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹))
3 fnrel 6535 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
4 coi2 6167 . . . 4 (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹)
53, 4syl 17 . . 3 (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹)
62, 5sylan9eqr 2800 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
71, 6sylbi 216 1 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wss 3887   I cid 5488  ran crn 5590  cres 5591  ccom 5593  Rel wrel 5594   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fcof1oinvd  7165  mapen  8928  mapfien  9167  hashfacen  14166  hashfacenOLD  14167  cofulid  17605  setccatid  17799  estrccatid  17848  efmndid  18527  efmndmnd  18528  symggrp  19008  f1omvdco2  19056  symggen  19078  psgnunilem1  19101  gsumval3  19508  gsumzf1o  19513  frgpcyg  20781  f1linds  21032  qtophmeo  22968  motgrp  26904  hoico2  30119  fcoinver  30946  fcobij  31057  symgfcoeu  31351  symgcom  31352  pmtrcnel2  31359  cycpmconjs  31423  subfacp1lem5  33146  ltrncoidN  38142  trlcoat  38737  trlcone  38742  cdlemg47a  38748  cdlemg47  38750  trljco  38754  tgrpgrplem  38763  tendo1mul  38784  tendo0pl  38805  cdlemkid2  38938  cdlemk45  38961  cdlemk53b  38970  erng1r  39009  tendocnv  39035  dvalveclem  39039  dva0g  39041  dvhgrp  39121  dvhlveclem  39122  dvh0g  39125  cdlemn8  39218  dihordlem7b  39229  dihopelvalcpre  39262  mendring  41017  rngccatidALTV  45547  ringccatidALTV  45610
  Copyright terms: Public domain W3C validator