| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi2 | ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6492 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | cores 6203 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹)) | |
| 3 | fnrel 6590 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 4 | coi2 6218 | . . . 4 ⊢ (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹) |
| 6 | 2, 5 | sylan9eqr 2790 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3898 I cid 5515 ran crn 5622 ↾ cres 5623 ∘ ccom 5625 Rel wrel 5626 Fn wfn 6483 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-fun 6490 df-fn 6491 df-f 6492 |
| This theorem is referenced by: fcof1oinvd 7235 mapen 9063 mapfien 9301 hashfacen 14365 cofulid 17801 setccatid 17995 estrccatid 18042 efmndid 18800 efmndmnd 18801 symggrp 19316 f1omvdco2 19364 symggen 19386 psgnunilem1 19409 gsumval3 19823 gsumzf1o 19828 frgpcyg 21514 f1linds 21766 qtophmeo 23735 motgrp 28524 hoico2 31741 fcoinver 32588 fcobij 32709 fcobijfs2 32711 symgfcoeu 33060 symgcom 33061 pmtrcnel2 33068 cycpmconjs 33134 subfacp1lem5 35251 ltrncoidN 40250 trlcoat 40845 trlcone 40850 cdlemg47a 40856 cdlemg47 40858 trljco 40862 tgrpgrplem 40871 tendo1mul 40892 tendo0pl 40913 cdlemkid2 41046 cdlemk45 41069 cdlemk53b 41078 erng1r 41117 tendocnv 41143 dvalveclem 41147 dva0g 41149 dvhgrp 41229 dvhlveclem 41230 dvh0g 41233 cdlemn8 41326 dihordlem7b 41337 dihopelvalcpre 41370 aks6d1c6lem5 42293 mendring 43308 rngccatidALTV 48399 ringccatidALTV 48433 |
| Copyright terms: Public domain | W3C validator |