MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi2 Structured version   Visualization version   GIF version

Theorem fcoi2 6698
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 6485 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 cores 6196 . . 3 (ran 𝐹𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = ( I ∘ 𝐹))
3 fnrel 6583 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
4 coi2 6211 . . . 4 (Rel 𝐹 → ( I ∘ 𝐹) = 𝐹)
53, 4syl 17 . . 3 (𝐹 Fn 𝐴 → ( I ∘ 𝐹) = 𝐹)
62, 5sylan9eqr 2788 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
71, 6sylbi 217 1 (𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wss 3902   I cid 5510  ran crn 5617  cres 5618  ccom 5620  Rel wrel 5621   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fcof1oinvd  7227  mapen  9054  mapfien  9292  hashfacen  14361  cofulid  17797  setccatid  17991  estrccatid  18038  efmndid  18796  efmndmnd  18797  symggrp  19313  f1omvdco2  19361  symggen  19383  psgnunilem1  19406  gsumval3  19820  gsumzf1o  19825  frgpcyg  21511  f1linds  21763  qtophmeo  23733  motgrp  28522  hoico2  31735  fcoinver  32582  fcobij  32701  fcobijfs2  32703  symgfcoeu  33049  symgcom  33050  pmtrcnel2  33057  cycpmconjs  33123  subfacp1lem5  35226  ltrncoidN  40173  trlcoat  40768  trlcone  40773  cdlemg47a  40779  cdlemg47  40781  trljco  40785  tgrpgrplem  40794  tendo1mul  40815  tendo0pl  40836  cdlemkid2  40969  cdlemk45  40992  cdlemk53b  41001  erng1r  41040  tendocnv  41066  dvalveclem  41070  dva0g  41072  dvhgrp  41152  dvhlveclem  41153  dvh0g  41156  cdlemn8  41249  dihordlem7b  41260  dihopelvalcpre  41293  aks6d1c6lem5  42216  mendring  43227  rngccatidALTV  48309  ringccatidALTV  48343
  Copyright terms: Public domain W3C validator