![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oppchomf | Structured version Visualization version GIF version |
Description: The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 16756. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
2oppchomf | ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
2 | eqid 2825 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | 1, 2 | homffn 16712 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
4 | fnrel 6226 | . . . 4 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel (Homf ‘𝐶)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ Rel (Homf ‘𝐶) |
6 | relxp 5364 | . . . 4 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
7 | fndm 6227 | . . . . . 6 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶))) | |
8 | 3, 7 | ax-mp 5 | . . . . 5 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
9 | 8 | releqi 5441 | . . . 4 ⊢ (Rel dom (Homf ‘𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶))) |
10 | 6, 9 | mpbir 223 | . . 3 ⊢ Rel dom (Homf ‘𝐶) |
11 | tpostpos2 7643 | . . 3 ⊢ ((Rel (Homf ‘𝐶) ∧ Rel dom (Homf ‘𝐶)) → tpos tpos (Homf ‘𝐶) = (Homf ‘𝐶)) | |
12 | 5, 10, 11 | mp2an 683 | . 2 ⊢ tpos tpos (Homf ‘𝐶) = (Homf ‘𝐶) |
13 | eqid 2825 | . . 3 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
14 | oppcbas.1 | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
15 | 14, 1 | oppchomf 16739 | . . 3 ⊢ tpos (Homf ‘𝐶) = (Homf ‘𝑂) |
16 | 13, 15 | oppchomf 16739 | . 2 ⊢ tpos tpos (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
17 | 12, 16 | eqtr3i 2851 | 1 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 × cxp 5344 dom cdm 5346 Rel wrel 5351 Fn wfn 6122 ‘cfv 6127 tpos ctpos 7621 Basecbs 16229 Homf chomf 16686 oppCatcoppc 16730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-hom 16336 df-cco 16337 df-homf 16690 df-oppc 16731 |
This theorem is referenced by: 2oppccomf 16744 oppcepi 16758 oppchofcl 17260 oppcyon 17269 oyoncl 17270 |
Copyright terms: Public domain | W3C validator |