MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oppchomf Structured version   Visualization version   GIF version

Theorem 2oppchomf 17625
Description: The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 17639. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
2oppchomf (Homf𝐶) = (Homf ‘(oppCat‘𝑂))

Proof of Theorem 2oppchomf
StepHypRef Expression
1 eqid 2731 . . . . 5 (Homf𝐶) = (Homf𝐶)
2 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
31, 2homffn 17594 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
4 fnrel 6578 . . . 4 ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → Rel (Homf𝐶))
53, 4ax-mp 5 . . 3 Rel (Homf𝐶)
6 relxp 5629 . . . 4 Rel ((Base‘𝐶) × (Base‘𝐶))
73fndmi 6580 . . . . 5 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
87releqi 5713 . . . 4 (Rel dom (Homf𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))
96, 8mpbir 231 . . 3 Rel dom (Homf𝐶)
10 tpostpos2 8172 . . 3 ((Rel (Homf𝐶) ∧ Rel dom (Homf𝐶)) → tpos tpos (Homf𝐶) = (Homf𝐶))
115, 9, 10mp2an 692 . 2 tpos tpos (Homf𝐶) = (Homf𝐶)
12 eqid 2731 . . 3 (oppCat‘𝑂) = (oppCat‘𝑂)
13 oppcbas.1 . . . 4 𝑂 = (oppCat‘𝐶)
1413, 1oppchomf 17621 . . 3 tpos (Homf𝐶) = (Homf𝑂)
1512, 14oppchomf 17621 . 2 tpos tpos (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
1611, 15eqtr3i 2756 1 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   × cxp 5609  dom cdm 5611  Rel wrel 5616   Fn wfn 6471  cfv 6476  tpos ctpos 8150  Basecbs 17115  Homf chomf 17567  oppCatcoppc 17612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-homf 17571  df-oppc 17613
This theorem is referenced by:  2oppccomf  17626  oppcepi  17641  oppchofcl  18161  oppcyon  18170  oyoncl  18171  oppccatb  49048  oppccicb  49083  funcoppc2  49175  natoppfb  49263  cmddu  49700  termolmd  49702
  Copyright terms: Public domain W3C validator