MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnexALT Structured version   Visualization version   GIF version

Theorem fnexALT 7767
Description: Alternate proof of fnex 7075, derived using the Axiom of Replacement in the form of funimaexg 6504. This version uses ax-pow 5283 and ax-un 7566, whereas fnex 7075 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 6519 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 relssdmrn 6161 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . . 3 (𝐹 Fn 𝐴𝐹 ⊆ (dom 𝐹 × ran 𝐹))
43adantr 480 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
5 fndm 6520 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65eleq1d 2823 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵𝐴𝐵))
76biimpar 477 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
8 fnfun 6517 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
9 funimaexg 6504 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
108, 9sylan 579 . . . 4 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐴) ∈ V)
11 imadmrn 5968 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
125imaeq2d 5958 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
1311, 12eqtr3id 2793 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
1413eleq1d 2823 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹𝐴) ∈ V))
1514biimpar 477 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝐴) ∈ V) → ran 𝐹 ∈ V)
1610, 15syldan 590 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → ran 𝐹 ∈ V)
17 xpexg 7578 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V)
187, 16, 17syl2anc 583 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (dom 𝐹 × ran 𝐹) ∈ V)
19 ssexg 5242 . 2 ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V)
204, 18, 19syl2anc 583 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator