Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnexALT | Structured version Visualization version GIF version |
Description: Alternate proof of fnex 7033, derived using the Axiom of Replacement in the form of funimaexg 6466. This version uses ax-pow 5258 and ax-un 7523, whereas fnex 7033 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnexALT | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6480 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | relssdmrn 6132 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | 3 | adantr 484 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
5 | fndm 6481 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | eleq1d 2822 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 6 | biimpar 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
8 | fnfun 6479 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
9 | funimaexg 6466 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
10 | 8, 9 | sylan 583 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
11 | imadmrn 5939 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
12 | 5 | imaeq2d 5929 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
13 | 11, 12 | eqtr3id 2792 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
14 | 13 | eleq1d 2822 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹 “ 𝐴) ∈ V)) |
15 | 14 | biimpar 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐹 “ 𝐴) ∈ V) → ran 𝐹 ∈ V) |
16 | 10, 15 | syldan 594 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → ran 𝐹 ∈ V) |
17 | xpexg 7535 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V) | |
18 | 7, 16, 17 | syl2anc 587 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (dom 𝐹 × ran 𝐹) ∈ V) |
19 | ssexg 5216 | . 2 ⊢ ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V) | |
20 | 4, 18, 19 | syl2anc 587 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 × cxp 5549 dom cdm 5551 ran crn 5552 “ cima 5554 Rel wrel 5556 Fun wfun 6374 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |