| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnexALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of fnex 7191, derived using the Axiom of Replacement in the form of funimaexg 6603. This version uses ax-pow 5320 and ax-un 7711, whereas fnex 7191 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnexALT | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6620 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | relssdmrn 6241 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 5 | fndm 6621 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 5 | eleq1d 2813 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 6 | biimpar 477 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
| 8 | fnfun 6618 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 9 | funimaexg 6603 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
| 10 | 8, 9 | sylan 580 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
| 11 | imadmrn 6041 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 12 | 5 | imaeq2d 6031 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 13 | 11, 12 | eqtr3id 2778 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
| 14 | 13 | eleq1d 2813 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹 “ 𝐴) ∈ V)) |
| 15 | 14 | biimpar 477 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐹 “ 𝐴) ∈ V) → ran 𝐹 ∈ V) |
| 16 | 10, 15 | syldan 591 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → ran 𝐹 ∈ V) |
| 17 | xpexg 7726 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V) | |
| 18 | 7, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (dom 𝐹 × ran 𝐹) ∈ V) |
| 19 | ssexg 5278 | . 2 ⊢ ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V) | |
| 20 | 4, 18, 19 | syl2anc 584 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 dom cdm 5638 ran crn 5639 “ cima 5641 Rel wrel 5643 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |