MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnfvOLD Structured version   Visualization version   GIF version

Theorem fnsnfvOLD 6848
Description: Obsolete version of fnsnfv 6847 as of 8-Aug-2024. (Contributed by NM, 22-May-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fnsnfvOLD ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfvOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
2 fnbrfvb 6822 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
31, 2bitrid 282 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 = (𝐹𝐵) ↔ 𝐵𝐹𝑦))
43abbidv 2807 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝑦 = (𝐹𝐵)} = {𝑦𝐵𝐹𝑦})
5 df-sn 4562 . . 3 {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)}
65a1i 11 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)})
7 fnrel 6535 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
8 relimasn 5992 . . . 4 (Rel 𝐹 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
97, 8syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
109adantr 481 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
114, 6, 103eqtr4d 2788 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  {csn 4561   class class class wbr 5074  cima 5592  Rel wrel 5594   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator