MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnfvOLD Structured version   Visualization version   GIF version

Theorem fnsnfvOLD 6830
Description: Obsolete version of fnsnfv 6829 as of 8-Aug-2024. (Contributed by NM, 22-May-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fnsnfvOLD ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfvOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
2 fnbrfvb 6804 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
31, 2syl5bb 282 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 = (𝐹𝐵) ↔ 𝐵𝐹𝑦))
43abbidv 2808 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝑦 = (𝐹𝐵)} = {𝑦𝐵𝐹𝑦})
5 df-sn 4559 . . 3 {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)}
65a1i 11 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)})
7 fnrel 6519 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
8 relimasn 5981 . . . 4 (Rel 𝐹 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
97, 8syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
109adantr 480 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
114, 6, 103eqtr4d 2788 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  {csn 4558   class class class wbr 5070  cima 5583  Rel wrel 5585   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator