| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7207. See fnexALT 7949 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnex | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6640 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | df-fn 6534 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eleq1a 2829 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹 ∈ 𝐵)) | |
| 4 | 3 | impcom 407 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
| 5 | resfunexg 7207 | . . . . 5 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) | |
| 6 | 4, 5 | sylan2 593 | . . . 4 ⊢ ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 7 | 6 | anassrs 467 | . . 3 ⊢ (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 8 | 2, 7 | sylanb 581 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 9 | resdm 6013 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
| 10 | 9 | eleq1d 2819 | . . 3 ⊢ (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V)) |
| 11 | 10 | biimpa 476 | . 2 ⊢ ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V) |
| 12 | 1, 8, 11 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 dom cdm 5654 ↾ cres 5656 Rel wrel 5659 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: fnexd 7210 funex 7211 fex 7218 offval 7680 fndmexb 7902 suppvalfn 8167 suppfnss 8188 fnsuppeq0 8191 wfrlem15OLD 8337 fndmeng 9049 fdmfifsupp 9387 cfsmolem 10284 axcc2lem 10450 unirnfdomd 10581 prdsbas2 17483 prdsplusgval 17487 prdsmulrval 17489 prdsleval 17491 prdsdsval 17492 prdsvscaval 17493 xpscf 17579 brssc 17827 sscpwex 17828 ssclem 17832 isssc 17833 rescval2 17841 reschom 17843 isfuncd 17878 dprdw 19993 prdsmgp 20111 dsmmbas2 21697 dsmmelbas 21699 ptval 23508 prdstopn 23566 qtoptop 23638 imastopn 23658 fnpreimac 32649 suppss3 32701 ofcfval 34129 dya2iocuni 34315 tfsconcatun 43361 stoweidlem27 46056 stoweidlem59 46088 omeiunle 46546 preimafvelsetpreimafv 47402 fundcmpsurinjlem2 47413 |
| Copyright terms: Public domain | W3C validator |