MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnex Structured version   Visualization version   GIF version

Theorem fnex 7194
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7192. See fnexALT 7932 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 6623 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 df-fn 6517 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eleq1a 2824 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
43impcom 407 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
5 resfunexg 7192 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
64, 5sylan2 593 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
76anassrs 467 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
82, 7sylanb 581 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
9 resdm 6000 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
109eleq1d 2814 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1110biimpa 476 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
121, 8, 11syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  dom cdm 5641  cres 5643  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  fnexd  7195  funex  7196  fex  7203  offval  7665  fndmexb  7885  suppvalfn  8150  suppfnss  8171  fnsuppeq0  8174  fndmeng  9009  fdmfifsupp  9333  cfsmolem  10230  axcc2lem  10396  unirnfdomd  10527  prdsbas2  17439  prdsplusgval  17443  prdsmulrval  17445  prdsleval  17447  prdsdsval  17448  prdsvscaval  17449  xpscf  17535  brssc  17783  sscpwex  17784  ssclem  17788  isssc  17789  rescval2  17797  reschom  17799  isfuncd  17834  dprdw  19949  prdsmgp  20067  dsmmbas2  21653  dsmmelbas  21655  ptval  23464  prdstopn  23522  qtoptop  23594  imastopn  23614  fnpreimac  32602  suppss3  32654  ofcfval  34095  dya2iocuni  34281  tfsconcatun  43333  stoweidlem27  46032  stoweidlem59  46064  omeiunle  46522  preimafvelsetpreimafv  47393  fundcmpsurinjlem2  47404
  Copyright terms: Public domain W3C validator