![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnex | Structured version Visualization version GIF version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7219. See fnexALT 7941 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnex | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6651 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | df-fn 6546 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eleq1a 2827 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹 ∈ 𝐵)) | |
4 | 3 | impcom 407 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
5 | resfunexg 7219 | . . . . 5 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) | |
6 | 4, 5 | sylan2 592 | . . . 4 ⊢ ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V) |
7 | 6 | anassrs 467 | . . 3 ⊢ (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
8 | 2, 7 | sylanb 580 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
9 | resdm 6026 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
10 | 9 | eleq1d 2817 | . . 3 ⊢ (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V)) |
11 | 10 | biimpa 476 | . 2 ⊢ ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V) |
12 | 1, 8, 11 | syl2an2r 682 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 dom cdm 5676 ↾ cres 5678 Rel wrel 5681 Fun wfun 6537 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: fnexd 7222 funex 7223 fex 7230 offval 7683 fndmexb 7903 suppvalfn 8159 suppfnss 8179 fnsuppeq0 8182 wfrlem15OLD 8329 fndmeng 9041 fdmfifsupp 9379 cfsmolem 10271 axcc2lem 10437 unirnfdomd 10568 prdsbas2 17422 prdsplusgval 17426 prdsmulrval 17428 prdsleval 17430 prdsdsval 17431 prdsvscaval 17432 xpscf 17518 brssc 17768 sscpwex 17769 ssclem 17773 isssc 17774 rescval2 17782 reschom 17785 rescabsOLD 17790 isfuncd 17822 dprdw 19925 prdsmgp 20049 dsmmbas2 21515 dsmmelbas 21517 ptval 23307 prdstopn 23365 qtoptop 23437 imastopn 23457 fnpreimac 32178 suppss3 32231 ofcfval 33409 dya2iocuni 33595 tfsconcatun 42402 stoweidlem27 45054 stoweidlem59 45086 omeiunle 45544 preimafvelsetpreimafv 46367 fundcmpsurinjlem2 46378 |
Copyright terms: Public domain | W3C validator |