| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7144. See fnexALT 7878 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnex | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6578 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | df-fn 6479 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eleq1a 2826 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹 ∈ 𝐵)) | |
| 4 | 3 | impcom 407 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
| 5 | resfunexg 7144 | . . . . 5 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) | |
| 6 | 4, 5 | sylan2 593 | . . . 4 ⊢ ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 7 | 6 | anassrs 467 | . . 3 ⊢ (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 8 | 2, 7 | sylanb 581 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 9 | resdm 5970 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
| 10 | 9 | eleq1d 2816 | . . 3 ⊢ (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V)) |
| 11 | 10 | biimpa 476 | . 2 ⊢ ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V) |
| 12 | 1, 8, 11 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5611 ↾ cres 5613 Rel wrel 5616 Fun wfun 6470 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: fnexd 7147 funex 7148 fex 7155 offval 7614 fndmexb 7831 suppvalfn 8093 suppfnss 8114 fnsuppeq0 8117 fndmeng 8952 fdmfifsupp 9254 cfsmolem 10156 axcc2lem 10322 unirnfdomd 10453 prdsbas2 17368 prdsplusgval 17372 prdsmulrval 17374 prdsleval 17376 prdsdsval 17377 prdsvscaval 17378 xpscf 17464 brssc 17716 sscpwex 17717 ssclem 17721 isssc 17722 rescval2 17730 reschom 17732 isfuncd 17767 dprdw 19919 prdsmgp 20064 dsmmbas2 21669 dsmmelbas 21671 ptval 23480 prdstopn 23538 qtoptop 23610 imastopn 23630 fnpreimac 32645 suppss3 32698 ofcfval 34103 dya2iocuni 34288 tfsconcatun 43370 stoweidlem27 46065 stoweidlem59 46097 omeiunle 46555 preimafvelsetpreimafv 47419 fundcmpsurinjlem2 47430 |
| Copyright terms: Public domain | W3C validator |