| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7158. See fnexALT 7892 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnex | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6591 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | df-fn 6492 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eleq1a 2828 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹 ∈ 𝐵)) | |
| 4 | 3 | impcom 407 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
| 5 | resfunexg 7158 | . . . . 5 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) | |
| 6 | 4, 5 | sylan2 593 | . . . 4 ⊢ ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 7 | 6 | anassrs 467 | . . 3 ⊢ (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 8 | 2, 7 | sylanb 581 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
| 9 | resdm 5982 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
| 10 | 9 | eleq1d 2818 | . . 3 ⊢ (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V)) |
| 11 | 10 | biimpa 476 | . 2 ⊢ ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V) |
| 12 | 1, 8, 11 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 dom cdm 5621 ↾ cres 5623 Rel wrel 5626 Fun wfun 6483 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: fnexd 7161 funex 7162 fex 7169 offval 7628 fndmexb 7845 suppvalfn 8107 suppfnss 8128 fnsuppeq0 8131 fndmeng 8968 fdmfifsupp 9270 cfsmolem 10172 axcc2lem 10338 unirnfdomd 10469 prdsbas2 17380 prdsplusgval 17384 prdsmulrval 17386 prdsleval 17388 prdsdsval 17389 prdsvscaval 17390 xpscf 17477 brssc 17729 sscpwex 17730 ssclem 17734 isssc 17735 rescval2 17743 reschom 17745 isfuncd 17780 dprdw 19932 prdsmgp 20077 dsmmbas2 21683 dsmmelbas 21685 ptval 23505 prdstopn 23563 qtoptop 23635 imastopn 23655 fnpreimac 32675 suppss3 32730 ofcfval 34183 dya2iocuni 34368 tfsconcatun 43494 stoweidlem27 46187 stoweidlem59 46219 omeiunle 46677 preimafvelsetpreimafv 47550 fundcmpsurinjlem2 47561 |
| Copyright terms: Public domain | W3C validator |