MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnex Structured version   Visualization version   GIF version

Theorem fnex 7160
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7158. See fnexALT 7892 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 6591 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 df-fn 6492 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eleq1a 2828 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
43impcom 407 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
5 resfunexg 7158 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
64, 5sylan2 593 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
76anassrs 467 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
82, 7sylanb 581 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
9 resdm 5982 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
109eleq1d 2818 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1110biimpa 476 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
121, 8, 11syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  dom cdm 5621  cres 5623  Rel wrel 5626  Fun wfun 6483   Fn wfn 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  fnexd  7161  funex  7162  fex  7169  offval  7628  fndmexb  7845  suppvalfn  8107  suppfnss  8128  fnsuppeq0  8131  fndmeng  8968  fdmfifsupp  9270  cfsmolem  10172  axcc2lem  10338  unirnfdomd  10469  prdsbas2  17380  prdsplusgval  17384  prdsmulrval  17386  prdsleval  17388  prdsdsval  17389  prdsvscaval  17390  xpscf  17477  brssc  17729  sscpwex  17730  ssclem  17734  isssc  17735  rescval2  17743  reschom  17745  isfuncd  17780  dprdw  19932  prdsmgp  20077  dsmmbas2  21683  dsmmelbas  21685  ptval  23505  prdstopn  23563  qtoptop  23635  imastopn  23655  fnpreimac  32675  suppss3  32730  ofcfval  34183  dya2iocuni  34368  tfsconcatun  43494  stoweidlem27  46187  stoweidlem59  46219  omeiunle  46677  preimafvelsetpreimafv  47550  fundcmpsurinjlem2  47561
  Copyright terms: Public domain W3C validator