MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnex Structured version   Visualization version   GIF version

Theorem fnex 6753
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 6751. See fnexALT 7411 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 6234 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 df-fn 6138 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eleq1a 2853 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
43impcom 398 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
5 resfunexg 6751 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
64, 5sylan2 586 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
76anassrs 461 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
82, 7sylanb 576 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
9 resdm 5691 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
109eleq1d 2843 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1110biimpa 470 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
121, 8, 11syl2an2r 675 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  Vcvv 3397  dom cdm 5355  cres 5357  Rel wrel 5360  Fun wfun 6129   Fn wfn 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143
This theorem is referenced by:  funex  6754  fex  6761  offval  7181  ofrfval  7182  suppvalfn  7583  suppfnss  7601  suppfnssOLD  7602  fnsuppeq0  7605  wfrlem15  7712  fndmeng  8319  fdmfifsupp  8573  cfsmolem  9427  axcc2lem  9593  unirnfdomd  9724  prdsbas2  16515  prdsplusgval  16519  prdsmulrval  16521  prdsleval  16523  prdsdsval  16524  prdsvscaval  16525  brssc  16859  sscpwex  16860  ssclem  16864  isssc  16865  rescval2  16873  reschom  16875  rescabs  16878  isfuncd  16910  dprdw  18796  prdsmgp  18997  dsmmbas2  20480  dsmmelbas  20482  ptval  21782  elptr  21785  prdstopn  21840  qtoptop  21912  imastopn  21932  fnpreimac  30050  suppss3  30082  ofcfval  30772  dya2iocuni  30957  trpredex  32339  fnexd  40241  stoweidlem27  41163  stoweidlem59  41195  omeiunle  41650
  Copyright terms: Public domain W3C validator