![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnex | Structured version Visualization version GIF version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7235. See fnexALT 7974 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnex | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6671 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | df-fn 6566 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eleq1a 2834 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹 ∈ 𝐵)) | |
4 | 3 | impcom 407 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
5 | resfunexg 7235 | . . . . 5 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) | |
6 | 4, 5 | sylan2 593 | . . . 4 ⊢ ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴 ∧ 𝐴 ∈ 𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V) |
7 | 6 | anassrs 467 | . . 3 ⊢ (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
8 | 2, 7 | sylanb 581 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ dom 𝐹) ∈ V) |
9 | resdm 6046 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) | |
10 | 9 | eleq1d 2824 | . . 3 ⊢ (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V)) |
11 | 10 | biimpa 476 | . 2 ⊢ ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V) |
12 | 1, 8, 11 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 Fun wfun 6557 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: fnexd 7238 funex 7239 fex 7246 offval 7706 fndmexb 7929 suppvalfn 8192 suppfnss 8213 fnsuppeq0 8216 wfrlem15OLD 8362 fndmeng 9074 fdmfifsupp 9413 cfsmolem 10308 axcc2lem 10474 unirnfdomd 10605 prdsbas2 17516 prdsplusgval 17520 prdsmulrval 17522 prdsleval 17524 prdsdsval 17525 prdsvscaval 17526 xpscf 17612 brssc 17862 sscpwex 17863 ssclem 17867 isssc 17868 rescval2 17876 reschom 17879 rescabsOLD 17884 isfuncd 17916 dprdw 20045 prdsmgp 20169 dsmmbas2 21775 dsmmelbas 21777 ptval 23594 prdstopn 23652 qtoptop 23724 imastopn 23744 fnpreimac 32688 suppss3 32742 ofcfval 34079 dya2iocuni 34265 tfsconcatun 43327 stoweidlem27 45983 stoweidlem59 46015 omeiunle 46473 preimafvelsetpreimafv 47313 fundcmpsurinjlem2 47324 |
Copyright terms: Public domain | W3C validator |