MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnex Structured version   Visualization version   GIF version

Theorem fnex 7093
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7091. See fnexALT 7793 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 6535 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 df-fn 6436 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eleq1a 2834 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
43impcom 408 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
5 resfunexg 7091 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
64, 5sylan2 593 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
76anassrs 468 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
82, 7sylanb 581 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
9 resdm 5936 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
109eleq1d 2823 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1110biimpa 477 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
121, 8, 11syl2an2r 682 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  dom cdm 5589  cres 5591  Rel wrel 5594  Fun wfun 6427   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fnexd  7094  funex  7095  fex  7102  offval  7542  fndmexb  7755  suppvalfn  7985  suppfnss  8005  fnsuppeq0  8008  wfrlem15OLD  8154  fndmeng  8825  fdmfifsupp  9138  cfsmolem  10026  axcc2lem  10192  unirnfdomd  10323  prdsbas2  17180  prdsplusgval  17184  prdsmulrval  17186  prdsleval  17188  prdsdsval  17189  prdsvscaval  17190  xpscf  17276  brssc  17526  sscpwex  17527  ssclem  17531  isssc  17532  rescval2  17540  reschom  17543  rescabsOLD  17548  isfuncd  17580  dprdw  19613  prdsmgp  19849  dsmmbas2  20944  dsmmelbas  20946  ptval  22721  prdstopn  22779  qtoptop  22851  imastopn  22871  fnpreimac  31008  suppss3  31059  ofcfval  32066  dya2iocuni  32250  stoweidlem27  43568  stoweidlem59  43600  omeiunle  44055  preimafvelsetpreimafv  44840  fundcmpsurinjlem2  44851
  Copyright terms: Public domain W3C validator