MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnex Structured version   Visualization version   GIF version

Theorem fnex 7157
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7155. See fnexALT 7893 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 6588 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 df-fn 6489 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eleq1a 2823 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
43impcom 407 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
5 resfunexg 7155 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
64, 5sylan2 593 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
76anassrs 467 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
82, 7sylanb 581 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
9 resdm 5981 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
109eleq1d 2813 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1110biimpa 476 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
121, 8, 11syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  dom cdm 5623  cres 5625  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  fnexd  7158  funex  7159  fex  7166  offval  7626  fndmexb  7846  suppvalfn  8108  suppfnss  8129  fnsuppeq0  8132  fndmeng  8967  fdmfifsupp  9284  cfsmolem  10183  axcc2lem  10349  unirnfdomd  10480  prdsbas2  17392  prdsplusgval  17396  prdsmulrval  17398  prdsleval  17400  prdsdsval  17401  prdsvscaval  17402  xpscf  17488  brssc  17740  sscpwex  17741  ssclem  17745  isssc  17746  rescval2  17754  reschom  17756  isfuncd  17791  dprdw  19910  prdsmgp  20055  dsmmbas2  21663  dsmmelbas  21665  ptval  23474  prdstopn  23532  qtoptop  23604  imastopn  23624  fnpreimac  32633  suppss3  32686  ofcfval  34084  dya2iocuni  34270  tfsconcatun  43330  stoweidlem27  46028  stoweidlem59  46060  omeiunle  46518  preimafvelsetpreimafv  47392  fundcmpsurinjlem2  47403
  Copyright terms: Public domain W3C validator