Proof of Theorem fconst5
Step | Hyp | Ref
| Expression |
1 | | rneq 5781 |
. . . 4
⊢ (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = ran (𝐴 × {𝐵})) |
2 | | rnxp 6003 |
. . . . 5
⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) |
3 | 2 | eqeq2d 2769 |
. . . 4
⊢ (𝐴 ≠ ∅ → (ran 𝐹 = ran (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) |
4 | 1, 3 | syl5ib 247 |
. . 3
⊢ (𝐴 ≠ ∅ → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵})) |
5 | 4 | adantl 485 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵})) |
6 | | df-fo 6345 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})) |
7 | | fof 6580 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{𝐵} → 𝐹:𝐴⟶{𝐵}) |
8 | 6, 7 | sylbir 238 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵}) |
9 | | fconst2g 6961 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
10 | 8, 9 | syl5ib 247 |
. . . . 5
⊢ (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹 = (𝐴 × {𝐵}))) |
11 | 10 | expd 419 |
. . . 4
⊢ (𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
12 | 11 | adantrd 495 |
. . 3
⊢ (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
13 | | fnrel 6439 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
14 | | snprc 4613 |
. . . . . 6
⊢ (¬
𝐵 ∈ V ↔ {𝐵} = ∅) |
15 | | relrn0 5814 |
. . . . . . . . . 10
⊢ (Rel
𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅)) |
16 | 15 | biimprd 251 |
. . . . . . . . 9
⊢ (Rel
𝐹 → (ran 𝐹 = ∅ → 𝐹 = ∅)) |
17 | 16 | adantl 485 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = ∅ → 𝐹 = ∅)) |
18 | | eqeq2 2770 |
. . . . . . . . 9
⊢ ({𝐵} = ∅ → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅)) |
19 | 18 | adantr 484 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅)) |
20 | | xpeq2 5548 |
. . . . . . . . . . 11
⊢ ({𝐵} = ∅ → (𝐴 × {𝐵}) = (𝐴 × ∅)) |
21 | | xp0 5991 |
. . . . . . . . . . 11
⊢ (𝐴 × ∅) =
∅ |
22 | 20, 21 | eqtrdi 2809 |
. . . . . . . . . 10
⊢ ({𝐵} = ∅ → (𝐴 × {𝐵}) = ∅) |
23 | 22 | eqeq2d 2769 |
. . . . . . . . 9
⊢ ({𝐵} = ∅ → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅)) |
24 | 23 | adantr 484 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅)) |
25 | 17, 19, 24 | 3imtr4d 297 |
. . . . . . 7
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
26 | 25 | ex 416 |
. . . . . 6
⊢ ({𝐵} = ∅ → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
27 | 14, 26 | sylbi 220 |
. . . . 5
⊢ (¬
𝐵 ∈ V → (Rel
𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
28 | 13, 27 | syl5 34 |
. . . 4
⊢ (¬
𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
29 | 28 | adantrd 495 |
. . 3
⊢ (¬
𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
30 | 12, 29 | pm2.61i 185 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
31 | 5, 30 | impbid 215 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) |