Proof of Theorem fconst5
| Step | Hyp | Ref
| Expression |
| 1 | | rneq 5947 |
. . . 4
⊢ (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = ran (𝐴 × {𝐵})) |
| 2 | | rnxp 6190 |
. . . . 5
⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) |
| 3 | 2 | eqeq2d 2748 |
. . . 4
⊢ (𝐴 ≠ ∅ → (ran 𝐹 = ran (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) |
| 4 | 1, 3 | imbitrid 244 |
. . 3
⊢ (𝐴 ≠ ∅ → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵})) |
| 5 | 4 | adantl 481 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵})) |
| 6 | | df-fo 6567 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵})) |
| 7 | | fof 6820 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{𝐵} → 𝐹:𝐴⟶{𝐵}) |
| 8 | 6, 7 | sylbir 235 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵}) |
| 9 | | fconst2g 7223 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| 10 | 8, 9 | imbitrid 244 |
. . . . 5
⊢ (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹 = (𝐴 × {𝐵}))) |
| 11 | 10 | expd 415 |
. . . 4
⊢ (𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 12 | 11 | adantrd 491 |
. . 3
⊢ (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 13 | | fnrel 6670 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| 14 | | snprc 4717 |
. . . . . 6
⊢ (¬
𝐵 ∈ V ↔ {𝐵} = ∅) |
| 15 | | relrn0 5983 |
. . . . . . . . . 10
⊢ (Rel
𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅)) |
| 16 | 15 | biimprd 248 |
. . . . . . . . 9
⊢ (Rel
𝐹 → (ran 𝐹 = ∅ → 𝐹 = ∅)) |
| 17 | 16 | adantl 481 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = ∅ → 𝐹 = ∅)) |
| 18 | | eqeq2 2749 |
. . . . . . . . 9
⊢ ({𝐵} = ∅ → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅)) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅)) |
| 20 | | xpeq2 5706 |
. . . . . . . . . . 11
⊢ ({𝐵} = ∅ → (𝐴 × {𝐵}) = (𝐴 × ∅)) |
| 21 | | xp0 6178 |
. . . . . . . . . . 11
⊢ (𝐴 × ∅) =
∅ |
| 22 | 20, 21 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ ({𝐵} = ∅ → (𝐴 × {𝐵}) = ∅) |
| 23 | 22 | eqeq2d 2748 |
. . . . . . . . 9
⊢ ({𝐵} = ∅ → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅)) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅)) |
| 25 | 17, 19, 24 | 3imtr4d 294 |
. . . . . . 7
⊢ (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
| 26 | 25 | ex 412 |
. . . . . 6
⊢ ({𝐵} = ∅ → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 27 | 14, 26 | sylbi 217 |
. . . . 5
⊢ (¬
𝐵 ∈ V → (Rel
𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 28 | 13, 27 | syl5 34 |
. . . 4
⊢ (¬
𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 29 | 28 | adantrd 491 |
. . 3
⊢ (¬
𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))) |
| 30 | 12, 29 | pm2.61i 182 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))) |
| 31 | 5, 30 | impbid 212 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) |