MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst5 Structured version   Visualization version   GIF version

Theorem fconst5 7243
Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst5 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))

Proof of Theorem fconst5
StepHypRef Expression
1 rneq 5961 . . . 4 (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = ran (𝐴 × {𝐵}))
2 rnxp 6201 . . . . 5 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
32eqeq2d 2751 . . . 4 (𝐴 ≠ ∅ → (ran 𝐹 = ran (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
41, 3imbitrid 244 . . 3 (𝐴 ≠ ∅ → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
54adantl 481 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
6 df-fo 6579 . . . . . . 7 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
7 fof 6834 . . . . . . 7 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
86, 7sylbir 235 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
9 fconst2g 7240 . . . . . 6 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
108, 9imbitrid 244 . . . . 5 (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹 = (𝐴 × {𝐵})))
1110expd 415 . . . 4 (𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
1211adantrd 491 . . 3 (𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
13 fnrel 6681 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
14 snprc 4742 . . . . . 6 𝐵 ∈ V ↔ {𝐵} = ∅)
15 relrn0 5995 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
1615biimprd 248 . . . . . . . . 9 (Rel 𝐹 → (ran 𝐹 = ∅ → 𝐹 = ∅))
1716adantl 481 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = ∅ → 𝐹 = ∅))
18 eqeq2 2752 . . . . . . . . 9 ({𝐵} = ∅ → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
1918adantr 480 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
20 xpeq2 5721 . . . . . . . . . . 11 ({𝐵} = ∅ → (𝐴 × {𝐵}) = (𝐴 × ∅))
21 xp0 6189 . . . . . . . . . . 11 (𝐴 × ∅) = ∅
2220, 21eqtrdi 2796 . . . . . . . . . 10 ({𝐵} = ∅ → (𝐴 × {𝐵}) = ∅)
2322eqeq2d 2751 . . . . . . . . 9 ({𝐵} = ∅ → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2423adantr 480 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2517, 19, 243imtr4d 294 . . . . . . 7 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
2625ex 412 . . . . . 6 ({𝐵} = ∅ → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2714, 26sylbi 217 . . . . 5 𝐵 ∈ V → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2813, 27syl5 34 . . . 4 𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2928adantrd 491 . . 3 𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
3012, 29pm2.61i 182 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
315, 30impbid 212 1 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  {csn 4648   × cxp 5698  ran crn 5701  Rel wrel 5705   Fn wfn 6568  wf 6569  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  imadrhmcl  20820  nvo00  30793  zar0ring  33824  esumnul  34012  esum0  34013  volsupnfl  37625
  Copyright terms: Public domain W3C validator