![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfvres2 | Structured version Visualization version GIF version |
Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
Ref | Expression |
---|---|
tocycfvres2 | ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
5 | 1, 2, 3, 4 | tocycfv 32824 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
6 | 5 | reseq1d 5978 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊))) |
7 | fnresi 6678 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
9 | 1zzd 12617 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | cshwfn 14777 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) | |
11 | 3, 9, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
12 | f1f1orn 6844 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
13 | f1ocnv 6845 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1-onto→ran 𝑊 → ◡𝑊:ran 𝑊–1-1-onto→dom 𝑊) | |
14 | f1ofn 6834 | . . . . 5 ⊢ (◡𝑊:ran 𝑊–1-1-onto→dom 𝑊 → ◡𝑊 Fn ran 𝑊) | |
15 | 4, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
16 | dfdm4 5892 | . . . . 5 ⊢ dom 𝑊 = ran ◡𝑊 | |
17 | wrddm 14497 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) | |
18 | 3, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
19 | ssidd 4001 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) | |
20 | 18, 19 | eqsstrd 4016 | . . . . 5 ⊢ (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊))) |
21 | 16, 20 | eqsstrrid 4027 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
22 | fnco 6666 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
23 | 11, 15, 21, 22 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
24 | disjdifr 4468 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
25 | 24 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
26 | fnunres1 6660 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) | |
27 | 8, 23, 25, 26 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
28 | 6, 27 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 I cid 5569 ◡ccnv 5671 dom cdm 5672 ran crn 5673 ↾ cres 5674 ∘ ccom 5676 Fn wfn 6537 –1-1→wf1 6539 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 ℤcz 12582 ..^cfzo 13653 ♯chash 14315 Word cword 14490 cyclShift ccsh 14764 toCycctocyc 32821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-hash 14316 df-word 14491 df-concat 14547 df-substr 14617 df-pfx 14647 df-csh 14765 df-tocyc 32822 |
This theorem is referenced by: cycpmconjslem2 32870 cyc3conja 32872 |
Copyright terms: Public domain | W3C validator |