Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfvres2 Structured version   Visualization version   GIF version

Theorem tocycfvres2 30955
Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfvres2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))

Proof of Theorem tocycfvres2
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 30953 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65reseq1d 5824 . 2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)))
7 fnresi 6465 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)
87a1i 11 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
9 1zzd 12094 . . . . 5 (𝜑 → 1 ∈ ℤ)
10 cshwfn 14252 . . . . 5 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
113, 9, 10syl2anc 587 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
12 f1f1orn 6629 . . . . 5 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
13 f1ocnv 6630 . . . . 5 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
14 f1ofn 6619 . . . . 5 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊 Fn ran 𝑊)
154, 12, 13, 144syl 19 . . . 4 (𝜑𝑊 Fn ran 𝑊)
16 dfdm4 5738 . . . . 5 dom 𝑊 = ran 𝑊
17 wrddm 13962 . . . . . . 7 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
183, 17syl 17 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
19 ssidd 3900 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
2018, 19eqsstrd 3915 . . . . 5 (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊)))
2116, 20eqsstrrid 3926 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
22 fnco 6453 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2311, 15, 21, 22syl3anc 1372 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
24 disjdifr 4362 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
2524a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
26 fnunres1 30519 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
278, 23, 25, 26syl3anc 1372 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
286, 27eqtrd 2773 1 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  cdif 3840  cun 3841  cin 3842  wss 3843  c0 4211   I cid 5428  ccnv 5524  dom cdm 5525  ran crn 5526  cres 5527  ccom 5529   Fn wfn 6334  1-1wf1 6336  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7170  0cc0 10615  1c1 10616  cz 12062  ..^cfzo 13124  chash 13782  Word cword 13955   cyclShift ccsh 14239  toCycctocyc 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-hash 13783  df-word 13956  df-concat 14012  df-substr 14092  df-pfx 14122  df-csh 14240  df-tocyc 30951
This theorem is referenced by:  cycpmconjslem2  30999  cyc3conja  31001
  Copyright terms: Public domain W3C validator