Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfvres2 Structured version   Visualization version   GIF version

Theorem tocycfvres2 33041
Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfvres2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))

Proof of Theorem tocycfvres2
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 33039 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65reseq1d 5938 . 2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)))
7 fnresi 6629 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)
87a1i 11 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
9 1zzd 12540 . . . . 5 (𝜑 → 1 ∈ ℤ)
10 cshwfn 14742 . . . . 5 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
113, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
12 f1f1orn 6793 . . . . 5 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
13 f1ocnv 6794 . . . . 5 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
14 f1ofn 6783 . . . . 5 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊 Fn ran 𝑊)
154, 12, 13, 144syl 19 . . . 4 (𝜑𝑊 Fn ran 𝑊)
16 dfdm4 5849 . . . . 5 dom 𝑊 = ran 𝑊
17 wrddm 14462 . . . . . . 7 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
183, 17syl 17 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
19 ssidd 3967 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
2018, 19eqsstrd 3978 . . . . 5 (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊)))
2116, 20eqsstrrid 3983 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
22 fnco 6618 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2311, 15, 21, 22syl3anc 1373 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
24 disjdifr 4432 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
2524a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
26 fnunres1 6612 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
278, 23, 25, 26syl3anc 1373 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
286, 27eqtrd 2764 1 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292   I cid 5525  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635   Fn wfn 6494  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  cz 12505  ..^cfzo 13591  chash 14271  Word cword 14454   cyclShift ccsh 14729  toCycctocyc 33036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-csh 14730  df-tocyc 33037
This theorem is referenced by:  cycpmconjslem2  33085  cyc3conja  33087
  Copyright terms: Public domain W3C validator