| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfvres2 | Structured version Visualization version GIF version | ||
| Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| Ref | Expression |
|---|---|
| tocycfvres2 | ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | 1, 2, 3, 4 | tocycfv 33078 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 6 | 5 | reseq1d 5926 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊))) |
| 7 | fnresi 6610 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
| 9 | 1zzd 12503 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 10 | cshwfn 14708 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) | |
| 11 | 3, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
| 12 | f1f1orn 6774 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
| 13 | f1ocnv 6775 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1-onto→ran 𝑊 → ◡𝑊:ran 𝑊–1-1-onto→dom 𝑊) | |
| 14 | f1ofn 6764 | . . . . 5 ⊢ (◡𝑊:ran 𝑊–1-1-onto→dom 𝑊 → ◡𝑊 Fn ran 𝑊) | |
| 15 | 4, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
| 16 | dfdm4 5834 | . . . . 5 ⊢ dom 𝑊 = ran ◡𝑊 | |
| 17 | wrddm 14428 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) | |
| 18 | 3, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 19 | ssidd 3953 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) | |
| 20 | 18, 19 | eqsstrd 3964 | . . . . 5 ⊢ (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊))) |
| 21 | 16, 20 | eqsstrrid 3969 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
| 22 | fnco 6599 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
| 23 | 11, 15, 21, 22 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
| 24 | disjdifr 4420 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
| 25 | 24 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
| 26 | fnunres1 6593 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) | |
| 27 | 8, 23, 25, 26 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
| 28 | 6, 27 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 I cid 5508 ◡ccnv 5613 dom cdm 5614 ran crn 5615 ↾ cres 5616 ∘ ccom 5618 Fn wfn 6476 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ℤcz 12468 ..^cfzo 13554 ♯chash 14237 Word cword 14420 cyclShift ccsh 14695 toCycctocyc 33075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-hash 14238 df-word 14421 df-concat 14478 df-substr 14549 df-pfx 14579 df-csh 14696 df-tocyc 33076 |
| This theorem is referenced by: cycpmconjslem2 33124 cyc3conja 33126 |
| Copyright terms: Public domain | W3C validator |