Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  actfunsnf1o Structured version   Visualization version   GIF version

Theorem actfunsnf1o 31985
Description: The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Hypotheses
Ref Expression
actfunsn.1 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
actfunsn.2 (𝜑𝐶 ∈ V)
actfunsn.3 (𝜑𝐼𝑉)
actfunsn.4 (𝜑 → ¬ 𝐼𝐵)
actfunsn.5 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
Assertion
Ref Expression
actfunsnf1o ((𝜑𝑘𝐶) → 𝐹:𝐴1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑘,𝐼,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑘)   𝐵(𝑥,𝑘)   𝐶(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem actfunsnf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 actfunsn.5 . . 3 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
2 uneq1 4083 . . . 4 (𝑥 = 𝑧 → (𝑥 ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
32cbvmptv 5133 . . 3 (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩})) = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
41, 3eqtri 2821 . 2 𝐹 = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5 vex 3444 . . . 4 𝑧 ∈ V
6 snex 5297 . . . 4 {⟨𝐼, 𝑘⟩} ∈ V
75, 6unex 7449 . . 3 (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V
87a1i 11 . 2 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V)
9 vex 3444 . . . 4 𝑦 ∈ V
109resex 5866 . . 3 (𝑦𝐵) ∈ V
1110a1i 11 . 2 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐵) ∈ V)
12 rspe 3263 . . . . . . 7 ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
134, 7elrnmpti 5796 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
1412, 13sylibr 237 . . . . . 6 ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 ∈ ran 𝐹)
1514adantll 713 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 ∈ ran 𝐹)
16 simpr 488 . . . . . . 7 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
1716reseq1d 5817 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵))
18 actfunsn.1 . . . . . . . . . 10 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
1918sselda 3915 . . . . . . . . 9 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → 𝑧 ∈ (𝐶m 𝐵))
20 elmapfn 8412 . . . . . . . . 9 (𝑧 ∈ (𝐶m 𝐵) → 𝑧 Fn 𝐵)
2119, 20syl 17 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → 𝑧 Fn 𝐵)
22 actfunsn.3 . . . . . . . . . 10 (𝜑𝐼𝑉)
23 fnsng 6376 . . . . . . . . . 10 ((𝐼𝑉𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
2422, 23sylan 583 . . . . . . . . 9 ((𝜑𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
2524adantr 484 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
26 actfunsn.4 . . . . . . . . . . 11 (𝜑 → ¬ 𝐼𝐵)
27 disjsn 4607 . . . . . . . . . . 11 ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼𝐵)
2826, 27sylibr 237 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ {𝐼}) = ∅)
2928adantr 484 . . . . . . . . 9 ((𝜑𝑘𝐶) → (𝐵 ∩ {𝐼}) = ∅)
3029adantr 484 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → (𝐵 ∩ {𝐼}) = ∅)
31 fnunres1 30369 . . . . . . . 8 ((𝑧 Fn 𝐵 ∧ {⟨𝐼, 𝑘⟩} Fn {𝐼} ∧ (𝐵 ∩ {𝐼}) = ∅) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3221, 25, 30, 31syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3332adantr 484 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
3417, 33eqtr2d 2834 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 = (𝑦𝐵))
3515, 34jca 515 . . . 4 ((((𝜑𝑘𝐶) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵)))
3635anasss 470 . . 3 (((𝜑𝑘𝐶) ∧ (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))) → (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵)))
37 simpr 488 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑧 = (𝑦𝐵))
38 simpr 488 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3938reseq1d 5817 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵))
4018ad3antrrr 729 . . . . . . . . . . . . 13 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝐴 ⊆ (𝐶m 𝐵))
41 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧𝐴)
4240, 41sseldd 3916 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 ∈ (𝐶m 𝐵))
4342, 20syl 17 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑧 Fn 𝐵)
4422ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝐼𝑉)
45 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑘𝐶)
4644, 45, 23syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
4728ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝐵 ∩ {𝐼}) = ∅)
4843, 46, 47, 31syl3anc 1368 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) = 𝑧)
4948, 41eqeltrd 2890 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩}) ↾ 𝐵) ∈ 𝐴)
5039, 49eqeltrd 2890 . . . . . . . 8 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) ∈ 𝐴)
51 simpr 488 . . . . . . . . 9 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
5251, 13sylib 221 . . . . . . . 8 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑧𝐴 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5350, 52r19.29a 3248 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐵) ∈ 𝐴)
5453adantr 484 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑦𝐵) ∈ 𝐴)
5537, 54eqeltrd 2890 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑧𝐴)
5637uneq1d 4089 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑧 ∪ {⟨𝐼, 𝑘⟩}) = ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}))
5739, 48eqtrd 2833 . . . . . . . . . 10 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑦𝐵) = 𝑧)
5857uneq1d 4089 . . . . . . . . 9 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
5958, 38eqtr4d 2836 . . . . . . . 8 (((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6059, 52r19.29a 3248 . . . . . . 7 (((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6160adantr 484 . . . . . 6 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → ((𝑦𝐵) ∪ {⟨𝐼, 𝑘⟩}) = 𝑦)
6256, 61eqtr2d 2834 . . . . 5 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → 𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
6355, 62jca 515 . . . 4 ((((𝜑𝑘𝐶) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 = (𝑦𝐵)) → (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})))
6463anasss 470 . . 3 (((𝜑𝑘𝐶) ∧ (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵))) → (𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})))
6536, 64impbida 800 . 2 ((𝜑𝑘𝐶) → ((𝑧𝐴𝑦 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) ↔ (𝑦 ∈ ran 𝐹𝑧 = (𝑦𝐵))))
664, 8, 11, 65f1od 7377 1 ((𝜑𝑘𝐶) → 𝐹:𝐴1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531  cmpt 5110  ran crn 5520  cres 5521   Fn wfn 6319  1-1-ontowf1o 6323  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by:  breprexplema  32011
  Copyright terms: Public domain W3C validator