MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fococnv2 Structured version   Visualization version   GIF version

Theorem fococnv2 6864
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 6811 . . 3 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funcocnv2 6863 . . 3 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
4 forn 6813 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
54reseq2d 5985 . 2 (𝐹:𝐴onto𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵))
63, 5eqtrd 2765 1 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   I cid 5575  ccnv 5677  ran crn 5679  cres 5680  ccom 5682  Fun wfun 6543  ontowfo 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555
This theorem is referenced by:  f1ococnv2  6865  foeqcnvco  7309
  Copyright terms: Public domain W3C validator