Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fococnv2 | Structured version Visualization version GIF version |
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
fococnv2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 6673 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funcocnv2 6724 | . . 3 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
4 | forn 6675 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
5 | 4 | reseq2d 5880 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵)) |
6 | 3, 5 | eqtrd 2778 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5479 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Fun wfun 6412 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: f1ococnv2 6726 foeqcnvco 7152 |
Copyright terms: Public domain | W3C validator |