![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fococnv2 | Structured version Visualization version GIF version |
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
fococnv2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 6829 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funcocnv2 6881 | . . 3 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
4 | forn 6831 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
5 | 4 | reseq2d 6004 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵)) |
6 | 3, 5 | eqtrd 2777 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5586 ◡ccnv 5692 ran crn 5694 ↾ cres 5695 ∘ ccom 5697 Fun wfun 6563 –onto→wfo 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 |
This theorem is referenced by: f1ococnv2 6883 foeqcnvco 7327 |
Copyright terms: Public domain | W3C validator |