![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fococnv2 | Structured version Visualization version GIF version |
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
fococnv2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 6807 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funcocnv2 6859 | . . 3 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
4 | forn 6809 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
5 | 4 | reseq2d 5982 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵)) |
6 | 3, 5 | eqtrd 2773 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 I cid 5574 ◡ccnv 5676 ran crn 5678 ↾ cres 5679 ∘ ccom 5681 Fun wfun 6538 –onto→wfo 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 |
This theorem is referenced by: f1ococnv2 6861 foeqcnvco 7298 |
Copyright terms: Public domain | W3C validator |