MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fococnv2 Structured version   Visualization version   GIF version

Theorem fococnv2 6725
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 6673 . . 3 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funcocnv2 6724 . . 3 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
4 forn 6675 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
54reseq2d 5880 . 2 (𝐹:𝐴onto𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵))
63, 5eqtrd 2778 1 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   I cid 5479  ccnv 5579  ran crn 5581  cres 5582  ccom 5584  Fun wfun 6412  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424
This theorem is referenced by:  f1ococnv2  6726  foeqcnvco  7152
  Copyright terms: Public domain W3C validator