MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fococnv2 Structured version   Visualization version   GIF version

Theorem fococnv2 6860
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 6807 . . 3 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funcocnv2 6859 . . 3 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
4 forn 6809 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
54reseq2d 5982 . 2 (𝐹:𝐴onto𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵))
63, 5eqtrd 2773 1 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542   I cid 5574  ccnv 5676  ran crn 5678  cres 5679  ccom 5681  Fun wfun 6538  ontowfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550
This theorem is referenced by:  f1ococnv2  6861  foeqcnvco  7298
  Copyright terms: Public domain W3C validator