MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofun Structured version   Visualization version   GIF version

Theorem fofun 6835
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
fofun (𝐹:𝐴onto𝐵 → Fun 𝐹)

Proof of Theorem fofun
StepHypRef Expression
1 fof 6834 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
21ffund 6751 1 (𝐹:𝐴onto𝐵 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6567  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by:  foco  6848  foimacnv  6879  resdif  6883  fococnv2  6888  focdmex  7996  fodomfi2  10129  fin1a2lem7  10475  brdom3  10597  1stf1  18261  1stf2  18262  2ndf1  18264  2ndf2  18265  1stfcl  18266  2ndfcl  18267  qtopcld  23742  qtopcmap  23748  elfm3  23979  bcthlem4  25380  uniiccdif  25632  bdayimaon  27756  nosupno  27766  noinfno  27781  bdayfun  27835  noeta2  27847  precsexlem10  28258  precsexlem11  28259  grporn  30553  xppreima  32664  fsuppcurry1  32739  fsuppcurry2  32740  qtophaus  33782  poimirlem26  37606  poimirlem27  37607  ovoliunnfl  37622  voliunnfl  37624
  Copyright terms: Public domain W3C validator