Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6718 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6634 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6452 –onto→wfo 6456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-fn 6461 df-f 6462 df-fo 6464 |
This theorem is referenced by: foco 6732 foimacnv 6763 resdif 6767 fococnv2 6772 focdmex 7830 fodomfi2 9862 fin1a2lem7 10208 brdom3 10330 1stf1 17954 1stf2 17955 2ndf1 17957 2ndf2 17958 1stfcl 17959 2ndfcl 17960 qtopcld 22909 qtopcmap 22915 elfm3 23146 bcthlem4 24536 uniiccdif 24787 grporn 28928 xppreima 31028 fsuppcurry1 31105 fsuppcurry2 31106 qtophaus 31831 bdayimaon 33941 nosupno 33951 noinfno 33966 bdayfun 34012 noeta2 34024 poimirlem26 35847 poimirlem27 35848 ovoliunnfl 35863 voliunnfl 35865 |
Copyright terms: Public domain | W3C validator |