| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6735 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6655 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6475 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 df-fn 6484 df-f 6485 df-fo 6487 |
| This theorem is referenced by: foco 6749 foimacnv 6780 resdif 6784 fococnv2 6789 focdmex 7888 fodomfi2 9948 fin1a2lem7 10294 brdom3 10416 1stf1 18095 1stf2 18096 2ndf1 18098 2ndf2 18099 1stfcl 18100 2ndfcl 18101 qtopcld 23626 qtopcmap 23632 elfm3 23863 bcthlem4 25252 uniiccdif 25504 bdayimaon 27630 nosupno 27640 noinfno 27655 bdayfun 27709 noeta2 27722 precsexlem10 28152 precsexlem11 28153 grporn 30496 xppreima 32622 fsuppcurry1 32702 fsuppcurry2 32703 qtophaus 33844 poimirlem26 37685 poimirlem27 37686 ovoliunnfl 37701 voliunnfl 37703 fonex 48897 |
| Copyright terms: Public domain | W3C validator |