| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6740 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6660 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-fn 6489 df-f 6490 df-fo 6492 |
| This theorem is referenced by: foco 6754 foimacnv 6785 resdif 6789 fococnv2 6794 focdmex 7898 fodomfi2 9973 fin1a2lem7 10319 brdom3 10441 1stf1 18116 1stf2 18117 2ndf1 18119 2ndf2 18120 1stfcl 18121 2ndfcl 18122 qtopcld 23616 qtopcmap 23622 elfm3 23853 bcthlem4 25243 uniiccdif 25495 bdayimaon 27621 nosupno 27631 noinfno 27646 bdayfun 27700 noeta2 27713 precsexlem10 28141 precsexlem11 28142 grporn 30483 xppreima 32602 fsuppcurry1 32681 fsuppcurry2 32682 qtophaus 33802 poimirlem26 37625 poimirlem27 37626 ovoliunnfl 37641 voliunnfl 37643 fonex 48852 |
| Copyright terms: Public domain | W3C validator |