| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6740 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6660 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-fn 6489 df-f 6490 df-fo 6492 |
| This theorem is referenced by: foco 6754 foimacnv 6785 resdif 6789 fococnv2 6794 focdmex 7894 fodomfi2 9958 fin1a2lem7 10304 brdom3 10426 1stf1 18100 1stf2 18101 2ndf1 18103 2ndf2 18104 1stfcl 18105 2ndfcl 18106 qtopcld 23629 qtopcmap 23635 elfm3 23866 bcthlem4 25255 uniiccdif 25507 bdayimaon 27633 nosupno 27643 noinfno 27658 bdayfun 27712 noeta2 27725 precsexlem10 28155 precsexlem11 28156 grporn 30503 xppreima 32629 fsuppcurry1 32711 fsuppcurry2 32712 qtophaus 33870 poimirlem26 37707 poimirlem27 37708 ovoliunnfl 37723 voliunnfl 37725 fonex 48992 |
| Copyright terms: Public domain | W3C validator |