| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6790 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6710 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6525 –onto→wfo 6529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-fn 6534 df-f 6535 df-fo 6537 |
| This theorem is referenced by: foco 6804 foimacnv 6835 resdif 6839 fococnv2 6844 focdmex 7954 fodomfi2 10074 fin1a2lem7 10420 brdom3 10542 1stf1 18204 1stf2 18205 2ndf1 18207 2ndf2 18208 1stfcl 18209 2ndfcl 18210 qtopcld 23651 qtopcmap 23657 elfm3 23888 bcthlem4 25279 uniiccdif 25531 bdayimaon 27657 nosupno 27667 noinfno 27682 bdayfun 27736 noeta2 27748 precsexlem10 28170 precsexlem11 28171 grporn 30502 xppreima 32623 fsuppcurry1 32702 fsuppcurry2 32703 qtophaus 33867 poimirlem26 37670 poimirlem27 37671 ovoliunnfl 37686 voliunnfl 37688 fonex 48842 |
| Copyright terms: Public domain | W3C validator |