Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6684 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6600 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6424 –onto→wfo 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-fn 6433 df-f 6434 df-fo 6436 |
This theorem is referenced by: foco 6698 foimacnv 6729 resdif 6732 fococnv2 6737 fornex 7785 fodomfi2 9800 fin1a2lem7 10146 brdom3 10268 1stf1 17890 1stf2 17891 2ndf1 17893 2ndf2 17894 1stfcl 17895 2ndfcl 17896 qtopcld 22845 qtopcmap 22851 elfm3 23082 bcthlem4 24472 uniiccdif 24723 grporn 28862 xppreima 30962 fsuppcurry1 31039 fsuppcurry2 31040 qtophaus 31765 bdayimaon 33875 nosupno 33885 noinfno 33900 bdayfun 33946 noeta2 33958 poimirlem26 35782 poimirlem27 35783 ovoliunnfl 35798 voliunnfl 35800 |
Copyright terms: Public domain | W3C validator |