![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6834 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6751 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6567 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 df-fo 6579 |
This theorem is referenced by: foco 6848 foimacnv 6879 resdif 6883 fococnv2 6888 focdmex 7996 fodomfi2 10129 fin1a2lem7 10475 brdom3 10597 1stf1 18261 1stf2 18262 2ndf1 18264 2ndf2 18265 1stfcl 18266 2ndfcl 18267 qtopcld 23742 qtopcmap 23748 elfm3 23979 bcthlem4 25380 uniiccdif 25632 bdayimaon 27756 nosupno 27766 noinfno 27781 bdayfun 27835 noeta2 27847 precsexlem10 28258 precsexlem11 28259 grporn 30553 xppreima 32664 fsuppcurry1 32739 fsuppcurry2 32740 qtophaus 33782 poimirlem26 37606 poimirlem27 37607 ovoliunnfl 37622 voliunnfl 37624 |
Copyright terms: Public domain | W3C validator |