| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6772 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6692 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6505 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-fn 6514 df-f 6515 df-fo 6517 |
| This theorem is referenced by: foco 6786 foimacnv 6817 resdif 6821 fococnv2 6826 focdmex 7934 fodomfi2 10013 fin1a2lem7 10359 brdom3 10481 1stf1 18153 1stf2 18154 2ndf1 18156 2ndf2 18157 1stfcl 18158 2ndfcl 18159 qtopcld 23600 qtopcmap 23606 elfm3 23837 bcthlem4 25227 uniiccdif 25479 bdayimaon 27605 nosupno 27615 noinfno 27630 bdayfun 27684 noeta2 27696 precsexlem10 28118 precsexlem11 28119 grporn 30450 xppreima 32569 fsuppcurry1 32648 fsuppcurry2 32649 qtophaus 33826 poimirlem26 37640 poimirlem27 37641 ovoliunnfl 37656 voliunnfl 37658 fonex 48855 |
| Copyright terms: Public domain | W3C validator |