| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6775 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6695 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6508 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: foco 6789 foimacnv 6820 resdif 6824 fococnv2 6829 focdmex 7937 fodomfi2 10020 fin1a2lem7 10366 brdom3 10488 1stf1 18160 1stf2 18161 2ndf1 18163 2ndf2 18164 1stfcl 18165 2ndfcl 18166 qtopcld 23607 qtopcmap 23613 elfm3 23844 bcthlem4 25234 uniiccdif 25486 bdayimaon 27612 nosupno 27622 noinfno 27637 bdayfun 27691 noeta2 27703 precsexlem10 28125 precsexlem11 28126 grporn 30457 xppreima 32576 fsuppcurry1 32655 fsuppcurry2 32656 qtophaus 33833 poimirlem26 37647 poimirlem27 37648 ovoliunnfl 37663 voliunnfl 37665 fonex 48859 |
| Copyright terms: Public domain | W3C validator |