Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeqcnvco Structured version   Visualization version   GIF version

Theorem foeqcnvco 7049
 Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))

Proof of Theorem foeqcnvco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 6628 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2 cnveq 5714 . . . . . 6 (𝐹 = 𝐺𝐹 = 𝐺)
32coeq2d 5703 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
43eqeq1d 2761 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐵) ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
51, 4syl5ibcom 248 . . 3 (𝐹:𝐴onto𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
65adantr 485 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
7 fofn 6579 . . . . 5 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
87ad2antrr 726 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 Fn 𝐴)
9 fofn 6579 . . . . 5 (𝐺:𝐴onto𝐵𝐺 Fn 𝐴)
109ad2antlr 727 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺 Fn 𝐴)
119adantl 486 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺 Fn 𝐴)
12 fnopfv 6835 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1311, 12sylan 584 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
14 fvex 6672 . . . . . . . . . . . . 13 (𝐺𝑥) ∈ V
15 vex 3414 . . . . . . . . . . . . 13 𝑥 ∈ V
1614, 15brcnv 5723 . . . . . . . . . . . 12 ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥))
17 df-br 5034 . . . . . . . . . . . 12 (𝑥𝐺(𝐺𝑥) ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1816, 17bitri 278 . . . . . . . . . . 11 ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1913, 18sylibr 237 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)𝐺𝑥)
207adantr 485 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹 Fn 𝐴)
21 fnopfv 6835 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2220, 21sylan 584 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
23 df-br 5034 . . . . . . . . . . 11 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2422, 23sylibr 237 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
25 breq2 5037 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐺𝑥)𝐺𝑦 ↔ (𝐺𝑥)𝐺𝑥))
26 breq1 5036 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐹(𝐹𝑥) ↔ 𝑥𝐹(𝐹𝑥)))
2725, 26anbi12d 634 . . . . . . . . . . 11 (𝑦 = 𝑥 → (((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)) ↔ ((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥))))
2815, 27spcev 3526 . . . . . . . . . 10 (((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥)) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
2919, 24, 28syl2anc 588 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
30 fvex 6672 . . . . . . . . . 10 (𝐹𝑥) ∈ V
3114, 30brco 5711 . . . . . . . . 9 ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3229, 31sylibr 237 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
3332adantlr 715 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
34 breq 5035 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐵) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
3534ad2antlr 727 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
3633, 35mpbid 235 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥))
37 fof 6577 . . . . . . . . . 10 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
3837adantl 486 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺:𝐴𝐵)
3938ffvelrnda 6843 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
40 fof 6577 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4140adantr 485 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹:𝐴𝐵)
4241ffvelrnda 6843 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
43 resieq 5835 . . . . . . . 8 (((𝐺𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4439, 42, 43syl2anc 588 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4544adantlr 715 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4636, 45mpbid 235 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
4746eqcomd 2765 . . . 4 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
488, 10, 47eqfnfvd 6797 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
4948ex 417 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → ((𝐹𝐺) = ( I ↾ 𝐵) → 𝐹 = 𝐺))
506, 49impbid 215 1 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539  ∃wex 1782   ∈ wcel 2112  ⟨cop 4529   class class class wbr 5033   I cid 5430  ◡ccnv 5524   ↾ cres 5527   ∘ ccom 5529   Fn wfn 6331  ⟶wf 6332  –onto→wfo 6334  ‘cfv 6336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fo 6342  df-fv 6344 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator