MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeqcnvco Structured version   Visualization version   GIF version

Theorem foeqcnvco 7246
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))

Proof of Theorem foeqcnvco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 6810 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2 cnveq 5829 . . . . . 6 (𝐹 = 𝐺𝐹 = 𝐺)
32coeq2d 5818 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
43eqeq1d 2738 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐵) ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
51, 4syl5ibcom 244 . . 3 (𝐹:𝐴onto𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
65adantr 481 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
7 fofn 6758 . . . . 5 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
87ad2antrr 724 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 Fn 𝐴)
9 fofn 6758 . . . . 5 (𝐺:𝐴onto𝐵𝐺 Fn 𝐴)
109ad2antlr 725 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺 Fn 𝐴)
119adantl 482 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺 Fn 𝐴)
12 fnopfv 7026 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1311, 12sylan 580 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
14 fvex 6855 . . . . . . . . . . . . 13 (𝐺𝑥) ∈ V
15 vex 3449 . . . . . . . . . . . . 13 𝑥 ∈ V
1614, 15brcnv 5838 . . . . . . . . . . . 12 ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥))
17 df-br 5106 . . . . . . . . . . . 12 (𝑥𝐺(𝐺𝑥) ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1816, 17bitri 274 . . . . . . . . . . 11 ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1913, 18sylibr 233 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)𝐺𝑥)
207adantr 481 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹 Fn 𝐴)
21 fnopfv 7026 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2220, 21sylan 580 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
23 df-br 5106 . . . . . . . . . . 11 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2422, 23sylibr 233 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
25 breq2 5109 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐺𝑥)𝐺𝑦 ↔ (𝐺𝑥)𝐺𝑥))
26 breq1 5108 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐹(𝐹𝑥) ↔ 𝑥𝐹(𝐹𝑥)))
2725, 26anbi12d 631 . . . . . . . . . . 11 (𝑦 = 𝑥 → (((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)) ↔ ((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥))))
2815, 27spcev 3565 . . . . . . . . . 10 (((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥)) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
2919, 24, 28syl2anc 584 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
30 fvex 6855 . . . . . . . . . 10 (𝐹𝑥) ∈ V
3114, 30brco 5826 . . . . . . . . 9 ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3229, 31sylibr 233 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
3332adantlr 713 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
34 breq 5107 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐵) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
3534ad2antlr 725 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
3633, 35mpbid 231 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥))
37 fof 6756 . . . . . . . . . 10 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
3837adantl 482 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺:𝐴𝐵)
3938ffvelcdmda 7035 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
40 fof 6756 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4140adantr 481 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹:𝐴𝐵)
4241ffvelcdmda 7035 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
43 resieq 5948 . . . . . . . 8 (((𝐺𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4439, 42, 43syl2anc 584 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4544adantlr 713 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
4636, 45mpbid 231 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
4746eqcomd 2742 . . . 4 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
488, 10, 47eqfnfvd 6985 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
4948ex 413 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → ((𝐹𝐺) = ( I ↾ 𝐵) → 𝐹 = 𝐺))
506, 49impbid 211 1 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  cop 4592   class class class wbr 5105   I cid 5530  ccnv 5632  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator