| Step | Hyp | Ref
| Expression |
| 1 | | fococnv2 6849 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
| 2 | | cnveq 5858 |
. . . . . 6
⊢ (𝐹 = 𝐺 → ◡𝐹 = ◡𝐺) |
| 3 | 2 | coeq2d 5847 |
. . . . 5
⊢ (𝐹 = 𝐺 → (𝐹 ∘ ◡𝐹) = (𝐹 ∘ ◡𝐺)) |
| 4 | 3 | eqeq1d 2738 |
. . . 4
⊢ (𝐹 = 𝐺 → ((𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵) ↔ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵))) |
| 5 | 1, 4 | syl5ibcom 245 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 = 𝐺 → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵))) |
| 6 | 5 | adantr 480 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 = 𝐺 → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵))) |
| 7 | | fofn 6797 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| 8 | 7 | ad2antrr 726 |
. . . 4
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 Fn 𝐴) |
| 9 | | fofn 6797 |
. . . . 5
⊢ (𝐺:𝐴–onto→𝐵 → 𝐺 Fn 𝐴) |
| 10 | 9 | ad2antlr 727 |
. . . 4
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐺 Fn 𝐴) |
| 11 | 9 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → 𝐺 Fn 𝐴) |
| 12 | | fnopfv 7070 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐺‘𝑥)〉 ∈ 𝐺) |
| 13 | 11, 12 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐺‘𝑥)〉 ∈ 𝐺) |
| 14 | | fvex 6894 |
. . . . . . . . . . . . 13
⊢ (𝐺‘𝑥) ∈ V |
| 15 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 16 | 14, 15 | brcnv 5867 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑥)◡𝐺𝑥 ↔ 𝑥𝐺(𝐺‘𝑥)) |
| 17 | | df-br 5125 |
. . . . . . . . . . . 12
⊢ (𝑥𝐺(𝐺‘𝑥) ↔ 〈𝑥, (𝐺‘𝑥)〉 ∈ 𝐺) |
| 18 | 16, 17 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥)◡𝐺𝑥 ↔ 〈𝑥, (𝐺‘𝑥)〉 ∈ 𝐺) |
| 19 | 13, 18 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥)◡𝐺𝑥) |
| 20 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹 Fn 𝐴) |
| 21 | | fnopfv 7070 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 22 | 20, 21 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 23 | | df-br 5125 |
. . . . . . . . . . 11
⊢ (𝑥𝐹(𝐹‘𝑥) ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 24 | 22, 23 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
| 25 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝐺‘𝑥)◡𝐺𝑦 ↔ (𝐺‘𝑥)◡𝐺𝑥)) |
| 26 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦𝐹(𝐹‘𝑥) ↔ 𝑥𝐹(𝐹‘𝑥))) |
| 27 | 25, 26 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (((𝐺‘𝑥)◡𝐺𝑦 ∧ 𝑦𝐹(𝐹‘𝑥)) ↔ ((𝐺‘𝑥)◡𝐺𝑥 ∧ 𝑥𝐹(𝐹‘𝑥)))) |
| 28 | 15, 27 | spcev 3590 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑥)◡𝐺𝑥 ∧ 𝑥𝐹(𝐹‘𝑥)) → ∃𝑦((𝐺‘𝑥)◡𝐺𝑦 ∧ 𝑦𝐹(𝐹‘𝑥))) |
| 29 | 19, 24, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ∃𝑦((𝐺‘𝑥)◡𝐺𝑦 ∧ 𝑦𝐹(𝐹‘𝑥))) |
| 30 | | fvex 6894 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ V |
| 31 | 14, 30 | brco 5855 |
. . . . . . . . 9
⊢ ((𝐺‘𝑥)(𝐹 ∘ ◡𝐺)(𝐹‘𝑥) ↔ ∃𝑦((𝐺‘𝑥)◡𝐺𝑦 ∧ 𝑦𝐹(𝐹‘𝑥))) |
| 32 | 29, 31 | sylibr 234 |
. . . . . . . 8
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥)(𝐹 ∘ ◡𝐺)(𝐹‘𝑥)) |
| 33 | 32 | adantlr 715 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥)(𝐹 ∘ ◡𝐺)(𝐹‘𝑥)) |
| 34 | | breq 5126 |
. . . . . . . 8
⊢ ((𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵) → ((𝐺‘𝑥)(𝐹 ∘ ◡𝐺)(𝐹‘𝑥) ↔ (𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥))) |
| 35 | 34 | ad2antlr 727 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥)(𝐹 ∘ ◡𝐺)(𝐹‘𝑥) ↔ (𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥))) |
| 36 | 33, 35 | mpbid 232 |
. . . . . 6
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥)) |
| 37 | | fof 6795 |
. . . . . . . . . 10
⊢ (𝐺:𝐴–onto→𝐵 → 𝐺:𝐴⟶𝐵) |
| 38 | 37 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → 𝐺:𝐴⟶𝐵) |
| 39 | 38 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
| 40 | | fof 6795 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 41 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → 𝐹:𝐴⟶𝐵) |
| 42 | 41 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 43 | | resieq 5982 |
. . . . . . . 8
⊢ (((𝐺‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ∈ 𝐵) → ((𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥))) |
| 44 | 39, 42, 43 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥))) |
| 45 | 44 | adantlr 715 |
. . . . . 6
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥)( I ↾ 𝐵)(𝐹‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥))) |
| 46 | 36, 45 | mpbid 232 |
. . . . 5
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
| 47 | 46 | eqcomd 2742 |
. . . 4
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 48 | 8, 10, 47 | eqfnfvd 7029 |
. . 3
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺) |
| 49 | 48 | ex 412 |
. 2
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵) → 𝐹 = 𝐺)) |
| 50 | 6, 49 | impbid 212 |
1
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 = 𝐺 ↔ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵))) |