Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwpprb Structured version   Visualization version   GIF version

Theorem fpprwpprb 47745
Description: An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
fpprwpprb ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))

Proof of Theorem fpprwpprb
StepHypRef Expression
1 fpprbasnn 47734 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 47733 . . . . 5 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 3simpa 1148 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
52, 4sylbid 240 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
61, 5mpcom 38 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
7 fpprwppr 47744 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
81, 7jca 511 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
96, 8jca 511 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
10 simprll 778 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ (ℤ‘4))
11 simprlr 779 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∉ ℙ)
12 eluz4nn 12856 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1312adantr 480 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℕ)
14 nnz 12557 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1512nnnn0d 12510 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ0)
16 zexpcl 14048 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℤ)
1714, 15, 16syl2anr 597 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) ∈ ℤ)
1814adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
19 moddvds 16240 . . . . . . . . . . 11 ((𝑋 ∈ ℕ ∧ (𝑁𝑋) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
2013, 17, 18, 19syl3anc 1373 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
21 nncn 12201 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 expm1t 14062 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2321, 12, 22syl2anr 597 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2423oveq1d 7405 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁))
25 nnm1nn0 12490 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
2612, 25syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
27 zexpcl 14048 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2814, 26, 27syl2anr 597 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2928zcnd 12646 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
3021adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3129, 30mulsubfacd 11646 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3224, 31eqtrd 2765 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3332breq2d 5122 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁)))
34 1zzd 12571 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
3528, 34zsubcld 12650 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ)
36 dvdsmulgcd 16533 . . . . . . . . . . . . 13 ((((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
3735, 18, 36syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
38 eluzelz 12810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
39 gcdcom 16490 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4038, 14, 39syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4140eqeq1d 2732 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 ↔ (𝑁 gcd 𝑋) = 1))
4241biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑁 gcd 𝑋) = 1))
4342imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑁 gcd 𝑋) = 1)
4443oveq2d 7406 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = (((𝑁↑(𝑋 − 1)) − 1) · 1))
4535zcnd 12646 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℂ)
4645mulridd 11198 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4746adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4844, 47eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = ((𝑁↑(𝑋 − 1)) − 1))
4948breq2d 5122 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5049biimpd 229 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5150ex 412 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5251com23 86 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5337, 52sylbid 240 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5433, 53sylbid 240 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5520, 54sylbid 240 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5655expimpd 453 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5756adantr 480 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5857imp 406 . . . . . 6 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5958impcom 407 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))
60 uzuzle24 12851 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
6160adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘2))
6261adantr 480 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ (ℤ‘2))
6314adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → 𝑁 ∈ ℤ)
6426adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → (𝑋 − 1) ∈ ℕ0)
6563, 64, 27syl2anr 597 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
6662, 65jca 511 . . . . . . 7 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
6766adantl 481 . . . . . 6 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
68 modm1div 16241 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
6967, 68syl 17 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
7059, 69mpbird 257 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)
712adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7271adantl 481 . . . . 5 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7372adantl 481 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7410, 11, 70, 73mpbir3and 1343 . . 3 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ ( FPPr ‘𝑁))
7574ex 412 . 2 ((𝑋 gcd 𝑁) = 1 → (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ ( FPPr ‘𝑁)))
769, 75impbid2 226 1 ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   · cmul 11080  cmin 11412  cn 12193  2c2 12248  4c4 12250  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  cexp 14033  cdvds 16229   gcd cgcd 16471  cprime 16648   FPPr cfppr 47729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-fppr 47730
This theorem is referenced by:  fpprel2  47746
  Copyright terms: Public domain W3C validator