Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwpprb Structured version   Visualization version   GIF version

Theorem fpprwpprb 44653
 Description: An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
fpprwpprb ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))

Proof of Theorem fpprwpprb
StepHypRef Expression
1 fpprbasnn 44642 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 44641 . . . . 5 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 3simpa 1145 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
52, 4sylbid 243 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
61, 5mpcom 38 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
7 fpprwppr 44652 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
81, 7jca 515 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
96, 8jca 515 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
10 simprll 778 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ (ℤ‘4))
11 simprlr 779 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∉ ℙ)
12 eluz4nn 12331 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1312adantr 484 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℕ)
14 nnz 12048 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1512nnnn0d 11999 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ0)
16 zexpcl 13499 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℤ)
1714, 15, 16syl2anr 599 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) ∈ ℤ)
1814adantl 485 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
19 moddvds 15671 . . . . . . . . . . 11 ((𝑋 ∈ ℕ ∧ (𝑁𝑋) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
2013, 17, 18, 19syl3anc 1368 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
21 nncn 11687 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 expm1t 13512 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2321, 12, 22syl2anr 599 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2423oveq1d 7170 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁))
25 nnm1nn0 11980 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
2612, 25syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
27 zexpcl 13499 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2814, 26, 27syl2anr 599 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2928zcnd 12132 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
3021adantl 485 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3129, 30mulsubfacd 11144 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3224, 31eqtrd 2793 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3332breq2d 5047 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁)))
34 1zzd 12057 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
3528, 34zsubcld 12136 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ)
36 dvdsmulgcd 15961 . . . . . . . . . . . . 13 ((((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
3735, 18, 36syl2anc 587 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
38 eluzelz 12297 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
39 gcdcom 15917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4038, 14, 39syl2an 598 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4140eqeq1d 2760 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 ↔ (𝑁 gcd 𝑋) = 1))
4241biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑁 gcd 𝑋) = 1))
4342imp 410 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑁 gcd 𝑋) = 1)
4443oveq2d 7171 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = (((𝑁↑(𝑋 − 1)) − 1) · 1))
4535zcnd 12132 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℂ)
4645mulid1d 10701 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4746adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4844, 47eqtrd 2793 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = ((𝑁↑(𝑋 − 1)) − 1))
4948breq2d 5047 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5049biimpd 232 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5150ex 416 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5251com23 86 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5337, 52sylbid 243 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5433, 53sylbid 243 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5520, 54sylbid 243 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5655expimpd 457 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5756adantr 484 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5857imp 410 . . . . . 6 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5958impcom 411 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))
60 eluz4eluz2 12330 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
6160adantr 484 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘2))
6261adantr 484 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ (ℤ‘2))
6314adantr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → 𝑁 ∈ ℤ)
6426adantr 484 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → (𝑋 − 1) ∈ ℕ0)
6563, 64, 27syl2anr 599 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
6662, 65jca 515 . . . . . . 7 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
6766adantl 485 . . . . . 6 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
68 modm1div 15672 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
6967, 68syl 17 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
7059, 69mpbird 260 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)
712adantr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7271adantl 485 . . . . 5 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7372adantl 485 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7410, 11, 70, 73mpbir3and 1339 . . 3 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ ( FPPr ‘𝑁))
7574ex 416 . 2 ((𝑋 gcd 𝑁) = 1 → (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ ( FPPr ‘𝑁)))
769, 75impbid2 229 1 ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∉ wnel 3055   class class class wbr 5035  ‘cfv 6339  (class class class)co 7155  ℂcc 10578  1c1 10581   · cmul 10585   − cmin 10913  ℕcn 11679  2c2 11734  4c4 11736  ℕ0cn0 11939  ℤcz 12025  ℤ≥cuz 12287   mod cmo 13291  ↑cexp 13484   ∥ cdvds 15660   gcd cgcd 15898  ℙcprime 16072   FPPr cfppr 44637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-dvds 15661  df-gcd 15899  df-fppr 44638 This theorem is referenced by:  fpprel2  44654
 Copyright terms: Public domain W3C validator