Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwpprb Structured version   Visualization version   GIF version

Theorem fpprwpprb 45922
Description: An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
fpprwpprb ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))

Proof of Theorem fpprwpprb
StepHypRef Expression
1 fpprbasnn 45911 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 45910 . . . . 5 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 3simpa 1148 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
52, 4sylbid 239 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
61, 5mpcom 38 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
7 fpprwppr 45921 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
81, 7jca 512 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
96, 8jca 512 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
10 simprll 777 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ (ℤ‘4))
11 simprlr 778 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∉ ℙ)
12 eluz4nn 12811 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1312adantr 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℕ)
14 nnz 12520 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1512nnnn0d 12473 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ0)
16 zexpcl 13982 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℤ)
1714, 15, 16syl2anr 597 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) ∈ ℤ)
1814adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
19 moddvds 16147 . . . . . . . . . . 11 ((𝑋 ∈ ℕ ∧ (𝑁𝑋) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
2013, 17, 18, 19syl3anc 1371 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
21 nncn 12161 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 expm1t 13996 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2321, 12, 22syl2anr 597 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2423oveq1d 7372 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁))
25 nnm1nn0 12454 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
2612, 25syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
27 zexpcl 13982 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2814, 26, 27syl2anr 597 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2928zcnd 12608 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
3021adantl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3129, 30mulsubfacd 11616 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3224, 31eqtrd 2776 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3332breq2d 5117 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁)))
34 1zzd 12534 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
3528, 34zsubcld 12612 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ)
36 dvdsmulgcd 16436 . . . . . . . . . . . . 13 ((((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
3735, 18, 36syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
38 eluzelz 12773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
39 gcdcom 16393 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4038, 14, 39syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4140eqeq1d 2738 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 ↔ (𝑁 gcd 𝑋) = 1))
4241biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑁 gcd 𝑋) = 1))
4342imp 407 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑁 gcd 𝑋) = 1)
4443oveq2d 7373 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = (((𝑁↑(𝑋 − 1)) − 1) · 1))
4535zcnd 12608 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℂ)
4645mulid1d 11172 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4746adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4844, 47eqtrd 2776 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = ((𝑁↑(𝑋 − 1)) − 1))
4948breq2d 5117 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5049biimpd 228 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5150ex 413 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5251com23 86 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5337, 52sylbid 239 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5433, 53sylbid 239 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5520, 54sylbid 239 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5655expimpd 454 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5756adantr 481 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5857imp 407 . . . . . 6 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5958impcom 408 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))
60 eluz4eluz2 12810 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
6160adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘2))
6261adantr 481 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ (ℤ‘2))
6314adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → 𝑁 ∈ ℤ)
6426adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → (𝑋 − 1) ∈ ℕ0)
6563, 64, 27syl2anr 597 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
6662, 65jca 512 . . . . . . 7 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
6766adantl 482 . . . . . 6 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
68 modm1div 16148 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
6967, 68syl 17 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
7059, 69mpbird 256 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)
712adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7271adantl 482 . . . . 5 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7372adantl 482 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7410, 11, 70, 73mpbir3and 1342 . . 3 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ ( FPPr ‘𝑁))
7574ex 413 . 2 ((𝑋 gcd 𝑁) = 1 → (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ ( FPPr ‘𝑁)))
769, 75impbid2 225 1 ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3049   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   · cmul 11056  cmin 11385  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499  cuz 12763   mod cmo 13774  cexp 13967  cdvds 16136   gcd cgcd 16374  cprime 16547   FPPr cfppr 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-fppr 45907
This theorem is referenced by:  fpprel2  45923
  Copyright terms: Public domain W3C validator