Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwpprb Structured version   Visualization version   GIF version

Theorem fpprwpprb 47727
Description: An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
fpprwpprb ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))

Proof of Theorem fpprwpprb
StepHypRef Expression
1 fpprbasnn 47716 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 47715 . . . . 5 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 3simpa 1149 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
52, 4sylbid 240 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
61, 5mpcom 38 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
7 fpprwppr 47726 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
81, 7jca 511 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
96, 8jca 511 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
10 simprll 779 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ (ℤ‘4))
11 simprlr 780 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∉ ℙ)
12 eluz4nn 12928 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1312adantr 480 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℕ)
14 nnz 12634 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1512nnnn0d 12587 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ0)
16 zexpcl 14117 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℤ)
1714, 15, 16syl2anr 597 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) ∈ ℤ)
1814adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
19 moddvds 16301 . . . . . . . . . . 11 ((𝑋 ∈ ℕ ∧ (𝑁𝑋) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
2013, 17, 18, 19syl3anc 1373 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
21 nncn 12274 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 expm1t 14131 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2321, 12, 22syl2anr 597 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2423oveq1d 7446 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁))
25 nnm1nn0 12567 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
2612, 25syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
27 zexpcl 14117 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2814, 26, 27syl2anr 597 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2928zcnd 12723 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
3021adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3129, 30mulsubfacd 11724 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3224, 31eqtrd 2777 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3332breq2d 5155 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁)))
34 1zzd 12648 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
3528, 34zsubcld 12727 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ)
36 dvdsmulgcd 16593 . . . . . . . . . . . . 13 ((((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
3735, 18, 36syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
38 eluzelz 12888 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
39 gcdcom 16550 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4038, 14, 39syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4140eqeq1d 2739 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 ↔ (𝑁 gcd 𝑋) = 1))
4241biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑁 gcd 𝑋) = 1))
4342imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑁 gcd 𝑋) = 1)
4443oveq2d 7447 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = (((𝑁↑(𝑋 − 1)) − 1) · 1))
4535zcnd 12723 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℂ)
4645mulridd 11278 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4746adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4844, 47eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = ((𝑁↑(𝑋 − 1)) − 1))
4948breq2d 5155 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5049biimpd 229 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5150ex 412 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5251com23 86 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5337, 52sylbid 240 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5433, 53sylbid 240 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5520, 54sylbid 240 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5655expimpd 453 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5756adantr 480 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5857imp 406 . . . . . 6 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5958impcom 407 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))
60 eluz4eluz2 12925 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
6160adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘2))
6261adantr 480 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ (ℤ‘2))
6314adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → 𝑁 ∈ ℤ)
6426adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → (𝑋 − 1) ∈ ℕ0)
6563, 64, 27syl2anr 597 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
6662, 65jca 511 . . . . . . 7 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
6766adantl 481 . . . . . 6 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
68 modm1div 16302 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
6967, 68syl 17 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
7059, 69mpbird 257 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)
712adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7271adantl 481 . . . . 5 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7372adantl 481 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7410, 11, 70, 73mpbir3and 1343 . . 3 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ ( FPPr ‘𝑁))
7574ex 412 . 2 ((𝑋 gcd 𝑁) = 1 → (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ ( FPPr ‘𝑁)))
769, 75impbid2 226 1 ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wnel 3046   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156   · cmul 11160  cmin 11492  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  cuz 12878   mod cmo 13909  cexp 14102  cdvds 16290   gcd cgcd 16531  cprime 16708   FPPr cfppr 47711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-fppr 47712
This theorem is referenced by:  fpprel2  47728
  Copyright terms: Public domain W3C validator