Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwpprb Structured version   Visualization version   GIF version

Theorem fpprwpprb 46052
Description: An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
fpprwpprb ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))

Proof of Theorem fpprwpprb
StepHypRef Expression
1 fpprbasnn 46041 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 46040 . . . . 5 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 3simpa 1148 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
52, 4sylbid 239 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ)))
61, 5mpcom 38 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
7 fpprwppr 46051 . . . 4 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
81, 7jca 512 . . 3 (𝑋 ∈ ( FPPr ‘𝑁) → (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
96, 8jca 512 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
10 simprll 777 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ (ℤ‘4))
11 simprlr 778 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∉ ℙ)
12 eluz4nn 12820 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1312adantr 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ ℕ)
14 nnz 12529 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1512nnnn0d 12482 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ0)
16 zexpcl 13992 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℤ)
1714, 15, 16syl2anr 597 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) ∈ ℤ)
1814adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
19 moddvds 16158 . . . . . . . . . . 11 ((𝑋 ∈ ℕ ∧ (𝑁𝑋) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
2013, 17, 18, 19syl3anc 1371 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
21 nncn 12170 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 expm1t 14006 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2321, 12, 22syl2anr 597 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2423oveq1d 7377 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁))
25 nnm1nn0 12463 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
2612, 25syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
27 zexpcl 13992 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2814, 26, 27syl2anr 597 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
2928zcnd 12617 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
3021adantl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3129, 30mulsubfacd 11625 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) · 𝑁) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3224, 31eqtrd 2771 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁𝑋) − 𝑁) = (((𝑁↑(𝑋 − 1)) − 1) · 𝑁))
3332breq2d 5122 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁)))
34 1zzd 12543 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
3528, 34zsubcld 12621 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ)
36 dvdsmulgcd 16447 . . . . . . . . . . . . 13 ((((𝑁↑(𝑋 − 1)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
3735, 18, 36syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) ↔ 𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋))))
38 eluzelz 12782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
39 gcdcom 16404 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4038, 14, 39syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 gcd 𝑁) = (𝑁 gcd 𝑋))
4140eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 ↔ (𝑁 gcd 𝑋) = 1))
4241biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑁 gcd 𝑋) = 1))
4342imp 407 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑁 gcd 𝑋) = 1)
4443oveq2d 7378 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = (((𝑁↑(𝑋 − 1)) − 1) · 1))
4535zcnd 12617 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) − 1) ∈ ℂ)
4645mulridd 11181 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4746adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · 1) = ((𝑁↑(𝑋 − 1)) − 1))
4844, 47eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) = ((𝑁↑(𝑋 − 1)) − 1))
4948breq2d 5122 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5049biimpd 228 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) ∧ (𝑋 gcd 𝑁) = 1) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5150ex 413 . . . . . . . . . . . . 13 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → ((𝑋 gcd 𝑁) = 1 → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5251com23 86 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · (𝑁 gcd 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5337, 52sylbid 239 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ (((𝑁↑(𝑋 − 1)) − 1) · 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5433, 53sylbid 239 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (𝑋 ∥ ((𝑁𝑋) − 𝑁) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5520, 54sylbid 239 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑁 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5655expimpd 454 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5756adantr 481 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))))
5857imp 407 . . . . . 6 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → ((𝑋 gcd 𝑁) = 1 → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
5958impcom 408 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1))
60 eluz4eluz2 12819 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
6160adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘2))
6261adantr 481 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ (ℤ‘2))
6314adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → 𝑁 ∈ ℤ)
6426adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) → (𝑋 − 1) ∈ ℕ0)
6563, 64, 27syl2anr 597 . . . . . . . 8 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
6662, 65jca 512 . . . . . . 7 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
6766adantl 482 . . . . . 6 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ))
68 modm1div 16159 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ (𝑁↑(𝑋 − 1)) ∈ ℤ) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
6967, 68syl 17 . . . . 5 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 ↔ 𝑋 ∥ ((𝑁↑(𝑋 − 1)) − 1)))
7059, 69mpbird 256 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)
712adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7271adantl 482 . . . . 5 (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7372adantl 482 . . . 4 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
7410, 11, 70, 73mpbir3and 1342 . . 3 (((𝑋 gcd 𝑁) = 1 ∧ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) → 𝑋 ∈ ( FPPr ‘𝑁))
7574ex 413 . 2 ((𝑋 gcd 𝑁) = 1 → (((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))) → 𝑋 ∈ ( FPPr ‘𝑁)))
769, 75impbid2 225 1 ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3045   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11058  1c1 11061   · cmul 11065  cmin 11394  cn 12162  2c2 12217  4c4 12219  0cn0 12422  cz 12508  cuz 12772   mod cmo 13784  cexp 13977  cdvds 16147   gcd cgcd 16385  cprime 16558   FPPr cfppr 46036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-dvds 16148  df-gcd 16386  df-fppr 46037
This theorem is referenced by:  fpprel2  46053
  Copyright terms: Public domain W3C validator