Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwppr Structured version   Visualization version   GIF version

Theorem fpprwppr 43974
Description: A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
Assertion
Ref Expression
fpprwppr (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))

Proof of Theorem fpprwppr
StepHypRef Expression
1 fpprbasnn 43964 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 43963 . . 3 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 nnz 11998 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 eluz4nn 12280 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
5 nnm1nn0 11932 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
7 zexpcl 13441 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
83, 6, 7syl2an 597 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
98zred 12081 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℝ)
104nnrpd 12423 . . . . . . . . . . 11 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
1110adantl 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑋 ∈ ℝ+)
129, 11modcld 13240 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ)
1312recnd 10662 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ)
14 1cnd 10629 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 1 ∈ ℂ)
15 nncn 11639 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 483 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℂ)
17 nnne0 11665 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1817adantr 483 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ≠ 0)
1913, 14, 16, 18mulcand 11266 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))
20 oveq1 7156 . . . . . . . 8 ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋))
213adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℤ)
22 modmulmodr 13302 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2321, 9, 11, 22syl3anc 1366 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2423eqeq1d 2822 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋)))
258zcnd 12082 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
2616, 25mulcomd 10655 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁))
27 expm1t 13454 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2827eqcomd 2826 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
2915, 4, 28syl2an 597 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
3026, 29eqtrd 2855 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁𝑋))
3130oveq1d 7164 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁𝑋) mod 𝑋))
3215mulid1d 10651 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
3332adantr 483 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · 1) = 𝑁)
3433oveq1d 7164 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋))
3531, 34eqeq12d 2836 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3635biimpd 231 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3724, 36sylbid 242 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3820, 37syl5 34 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3919, 38sylbird 262 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
4039a1d 25 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
4140ex 415 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ (ℤ‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
42413impd 1343 . . 3 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
432, 42sylbid 242 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
441, 43mpcom 38 1 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wnel 3122  cfv 6348  (class class class)co 7149  cc 10528  cr 10529  0cc0 10530  1c1 10531   · cmul 10535  cmin 10863  cn 11631  4c4 11688  0cn0 11891  cz 11975  cuz 12237  +crp 12383   mod cmo 13234  cexp 13426  cprime 16008   FPPr cfppr 43959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-inf 8900  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13427  df-dvds 15601  df-fppr 43960
This theorem is referenced by:  fpprwpprb  43975  fpprel2  43976  nfermltl2rev  43978
  Copyright terms: Public domain W3C validator