Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwppr Structured version   Visualization version   GIF version

Theorem fpprwppr 46051
Description: A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
Assertion
Ref Expression
fpprwppr (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))

Proof of Theorem fpprwppr
StepHypRef Expression
1 fpprbasnn 46041 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 46040 . . 3 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 nnz 12529 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 eluz4nn 12820 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
5 nnm1nn0 12463 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
7 zexpcl 13992 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
83, 6, 7syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
98zred 12616 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℝ)
104nnrpd 12964 . . . . . . . . . . 11 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
1110adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑋 ∈ ℝ+)
129, 11modcld 13790 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ)
1312recnd 11192 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ)
14 1cnd 11159 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 1 ∈ ℂ)
15 nncn 12170 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℂ)
17 nnne0 12196 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1817adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ≠ 0)
1913, 14, 16, 18mulcand 11797 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))
20 oveq1 7369 . . . . . . . 8 ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋))
213adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℤ)
22 modmulmodr 13852 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2321, 9, 11, 22syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2423eqeq1d 2733 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋)))
258zcnd 12617 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
2616, 25mulcomd 11185 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁))
27 expm1t 14006 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2827eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
2915, 4, 28syl2an 596 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
3026, 29eqtrd 2771 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁𝑋))
3130oveq1d 7377 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁𝑋) mod 𝑋))
3215mulridd 11181 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
3332adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · 1) = 𝑁)
3433oveq1d 7377 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋))
3531, 34eqeq12d 2747 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3635biimpd 228 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3724, 36sylbid 239 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3820, 37syl5 34 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3919, 38sylbird 259 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
4039a1d 25 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
4140ex 413 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ (ℤ‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
42413impd 1348 . . 3 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
432, 42sylbid 239 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
441, 43mpcom 38 1 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wnel 3045  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   · cmul 11065  cmin 11394  cn 12162  4c4 12219  0cn0 12422  cz 12508  cuz 12772  +crp 12924   mod cmo 13784  cexp 13977  cprime 16558   FPPr cfppr 46036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-dvds 16148  df-fppr 46037
This theorem is referenced by:  fpprwpprb  46052  fpprel2  46053  nfermltl2rev  46055
  Copyright terms: Public domain W3C validator