Proof of Theorem fpprwppr
| Step | Hyp | Ref
| Expression |
| 1 | | fpprbasnn 47710 |
. 2
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) |
| 2 | | fpprel 47709 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4)
∧ 𝑋 ∉ ℙ
∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) |
| 3 | | nnz 12614 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 4 | | eluz4nn 12907 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈
(ℤ≥‘4) → 𝑋 ∈ ℕ) |
| 5 | | nnm1nn0 12547 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℕ → (𝑋 − 1) ∈
ℕ0) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈
(ℤ≥‘4) → (𝑋 − 1) ∈
ℕ0) |
| 7 | | zexpcl 14099 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈
ℕ0) → (𝑁↑(𝑋 − 1)) ∈
ℤ) |
| 8 | 3, 6, 7 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁↑(𝑋 − 1)) ∈
ℤ) |
| 9 | 8 | zred 12702 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁↑(𝑋 − 1)) ∈
ℝ) |
| 10 | 4 | nnrpd 13054 |
. . . . . . . . . . 11
⊢ (𝑋 ∈
(ℤ≥‘4) → 𝑋 ∈
ℝ+) |
| 11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → 𝑋 ∈
ℝ+) |
| 12 | 9, 11 | modcld 13897 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ) |
| 13 | 12 | recnd 11268 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ) |
| 14 | | 1cnd 11235 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → 1 ∈ ℂ) |
| 15 | | nncn 12253 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → 𝑁 ∈ ℂ) |
| 17 | | nnne0 12279 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 18 | 17 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → 𝑁 ≠ 0) |
| 19 | 13, 14, 16, 18 | mulcand 11875 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)) |
| 20 | | oveq1 7417 |
. . . . . . . 8
⊢ ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋)) |
| 21 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → 𝑁 ∈ ℤ) |
| 22 | | modmulmodr 13960 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+)
→ ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋)) |
| 23 | 21, 9, 11, 22 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋)) |
| 24 | 23 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋))) |
| 25 | 8 | zcnd 12703 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁↑(𝑋 − 1)) ∈
ℂ) |
| 26 | 16, 25 | mulcomd 11261 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁)) |
| 27 | | expm1t 14113 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁↑𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁)) |
| 28 | 27 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁↑𝑋)) |
| 29 | 15, 4, 28 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁↑𝑋)) |
| 30 | 26, 29 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁↑𝑋)) |
| 31 | 30 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁↑𝑋) mod 𝑋)) |
| 32 | 15 | mulridd 11257 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑁 · 1) = 𝑁) |
| 34 | 33 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋)) |
| 35 | 31, 34 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 36 | 35 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 37 | 24, 36 | sylbid 240 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 38 | 20, 37 | syl5 34 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 39 | 19, 38 | sylbird 260 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 40 | 39 | a1d 25 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈
(ℤ≥‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)))) |
| 41 | 40 | ex 412 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑋 ∈
(ℤ≥‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) |
| 42 | 41 | 3impd 1349 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝑋 ∈
(ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 43 | 2, 42 | sylbid 240 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))) |
| 44 | 1, 43 | mpcom 38 |
1
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) |