Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwppr Structured version   Visualization version   GIF version

Theorem fpprwppr 47613
Description: A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
Assertion
Ref Expression
fpprwppr (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))

Proof of Theorem fpprwppr
StepHypRef Expression
1 fpprbasnn 47603 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 47602 . . 3 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 nnz 12660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 eluz4nn 12951 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
5 nnm1nn0 12594 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
7 zexpcl 14127 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
83, 6, 7syl2an 595 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
98zred 12747 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℝ)
104nnrpd 13097 . . . . . . . . . . 11 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
1110adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑋 ∈ ℝ+)
129, 11modcld 13926 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ)
1312recnd 11318 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ)
14 1cnd 11285 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 1 ∈ ℂ)
15 nncn 12301 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℂ)
17 nnne0 12327 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1817adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ≠ 0)
1913, 14, 16, 18mulcand 11923 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))
20 oveq1 7455 . . . . . . . 8 ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋))
213adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℤ)
22 modmulmodr 13988 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2321, 9, 11, 22syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2423eqeq1d 2742 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋)))
258zcnd 12748 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
2616, 25mulcomd 11311 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁))
27 expm1t 14141 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2827eqcomd 2746 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
2915, 4, 28syl2an 595 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
3026, 29eqtrd 2780 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁𝑋))
3130oveq1d 7463 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁𝑋) mod 𝑋))
3215mulridd 11307 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
3332adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · 1) = 𝑁)
3433oveq1d 7463 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋))
3531, 34eqeq12d 2756 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3635biimpd 229 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3724, 36sylbid 240 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3820, 37syl5 34 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3919, 38sylbird 260 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
4039a1d 25 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
4140ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ (ℤ‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
42413impd 1348 . . 3 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
432, 42sylbid 240 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
441, 43mpcom 38 1 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wnel 3052  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cmin 11520  cn 12293  4c4 12350  0cn0 12553  cz 12639  cuz 12903  +crp 13057   mod cmo 13920  cexp 14112  cprime 16718   FPPr cfppr 47598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-dvds 16303  df-fppr 47599
This theorem is referenced by:  fpprwpprb  47614  fpprel2  47615  nfermltl2rev  47617
  Copyright terms: Public domain W3C validator