Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwppr Structured version   Visualization version   GIF version

Theorem fpprwppr 45079
Description: A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
Assertion
Ref Expression
fpprwppr (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))

Proof of Theorem fpprwppr
StepHypRef Expression
1 fpprbasnn 45069 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 45068 . . 3 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 nnz 12272 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 eluz4nn 12555 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
5 nnm1nn0 12204 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
7 zexpcl 13725 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
83, 6, 7syl2an 595 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
98zred 12355 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℝ)
104nnrpd 12699 . . . . . . . . . . 11 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
1110adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑋 ∈ ℝ+)
129, 11modcld 13523 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ)
1312recnd 10934 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ)
14 1cnd 10901 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 1 ∈ ℂ)
15 nncn 11911 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℂ)
17 nnne0 11937 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1817adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ≠ 0)
1913, 14, 16, 18mulcand 11538 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))
20 oveq1 7262 . . . . . . . 8 ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋))
213adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℤ)
22 modmulmodr 13585 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2321, 9, 11, 22syl3anc 1369 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2423eqeq1d 2740 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋)))
258zcnd 12356 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
2616, 25mulcomd 10927 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁))
27 expm1t 13739 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2827eqcomd 2744 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
2915, 4, 28syl2an 595 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
3026, 29eqtrd 2778 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁𝑋))
3130oveq1d 7270 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁𝑋) mod 𝑋))
3215mulid1d 10923 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
3332adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · 1) = 𝑁)
3433oveq1d 7270 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋))
3531, 34eqeq12d 2754 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3635biimpd 228 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3724, 36sylbid 239 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3820, 37syl5 34 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3919, 38sylbird 259 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
4039a1d 25 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
4140ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ (ℤ‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
42413impd 1346 . . 3 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
432, 42sylbid 239 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
441, 43mpcom 38 1 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cmin 11135  cn 11903  4c4 11960  0cn0 12163  cz 12249  cuz 12511  +crp 12659   mod cmo 13517  cexp 13710  cprime 16304   FPPr cfppr 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dvds 15892  df-fppr 45065
This theorem is referenced by:  fpprwpprb  45080  fpprel2  45081  nfermltl2rev  45083
  Copyright terms: Public domain W3C validator