Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprwppr Structured version   Visualization version   GIF version

Theorem fpprwppr 45921
Description: A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
Assertion
Ref Expression
fpprwppr (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))

Proof of Theorem fpprwppr
StepHypRef Expression
1 fpprbasnn 45911 . 2 (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
2 fpprel 45910 . . 3 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
3 nnz 12520 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 eluz4nn 12811 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
5 nnm1nn0 12454 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (𝑋 − 1) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (ℤ‘4) → (𝑋 − 1) ∈ ℕ0)
7 zexpcl 13982 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑋 − 1) ∈ ℕ0) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
83, 6, 7syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℤ)
98zred 12607 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℝ)
104nnrpd 12955 . . . . . . . . . . 11 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
1110adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑋 ∈ ℝ+)
129, 11modcld 13780 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℝ)
1312recnd 11183 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) mod 𝑋) ∈ ℂ)
14 1cnd 11150 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 1 ∈ ℂ)
15 nncn 12161 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℂ)
17 nnne0 12187 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1817adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ≠ 0)
1913, 14, 16, 18mulcand 11788 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) ↔ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))
20 oveq1 7364 . . . . . . . 8 ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋))
213adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → 𝑁 ∈ ℤ)
22 modmulmodr 13842 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁↑(𝑋 − 1)) ∈ ℝ ∧ 𝑋 ∈ ℝ+) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2321, 9, 11, 22syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋))
2423eqeq1d 2738 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋)))
258zcnd 12608 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁↑(𝑋 − 1)) ∈ ℂ)
2616, 25mulcomd 11176 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = ((𝑁↑(𝑋 − 1)) · 𝑁))
27 expm1t 13996 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → (𝑁𝑋) = ((𝑁↑(𝑋 − 1)) · 𝑁))
2827eqcomd 2742 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑋 ∈ ℕ) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
2915, 4, 28syl2an 596 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁↑(𝑋 − 1)) · 𝑁) = (𝑁𝑋))
3026, 29eqtrd 2776 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · (𝑁↑(𝑋 − 1))) = (𝑁𝑋))
3130oveq1d 7372 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁𝑋) mod 𝑋))
3215mulid1d 11172 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
3332adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑁 · 1) = 𝑁)
3433oveq1d 7372 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · 1) mod 𝑋) = (𝑁 mod 𝑋))
3531, 34eqeq12d 2752 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) ↔ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3635biimpd 228 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · (𝑁↑(𝑋 − 1))) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3724, 36sylbid 239 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) mod 𝑋) = ((𝑁 · 1) mod 𝑋) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3820, 37syl5 34 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → ((𝑁 · ((𝑁↑(𝑋 − 1)) mod 𝑋)) = (𝑁 · 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
3919, 38sylbird 259 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
4039a1d 25 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (ℤ‘4)) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))))
4140ex 413 . . . 4 (𝑁 ∈ ℕ → (𝑋 ∈ (ℤ‘4) → (𝑋 ∉ ℙ → (((𝑁↑(𝑋 − 1)) mod 𝑋) = 1 → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
42413impd 1348 . . 3 (𝑁 ∈ ℕ → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
432, 42sylbid 239 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))
441, 43mpcom 38 1 (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  cmin 11385  cn 12153  4c4 12210  0cn0 12413  cz 12499  cuz 12763  +crp 12915   mod cmo 13774  cexp 13967  cprime 16547   FPPr cfppr 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-dvds 16137  df-fppr 45907
This theorem is referenced by:  fpprwpprb  45922  fpprel2  45923  nfermltl2rev  45925
  Copyright terms: Public domain W3C validator