MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond2 Structured version   Visualization version   GIF version

Theorem frcond2 30182
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frcond1.v 𝑉 = (Vtx‘𝐺)
frcond1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frcond2 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐸,𝑏   𝐺,𝑏   𝑉,𝑏

Proof of Theorem frcond2
StepHypRef Expression
1 frcond1.v . . 3 𝑉 = (Vtx‘𝐺)
2 frcond1.e . . 3 𝐸 = (Edg‘𝐺)
31, 2frcond1 30181 . 2 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
4 prex 5405 . . . . 5 {𝐴, 𝑏} ∈ V
5 prex 5405 . . . . 5 {𝑏, 𝐶} ∈ V
64, 5prss 4794 . . . 4 (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)
76bicomi 224 . . 3 ({{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
87reubii 3366 . 2 (∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
93, 8imbitrdi 251 1 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  ∃!wreu 3355  wss 3924  {cpr 4601  cfv 6528  Vtxcvtx 28909  Edgcedg 28960   FriendGraph cfrgr 30173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-frgr 30174
This theorem is referenced by:  frgreu  30183  frgrncvvdeqlem9  30222  frgr2wwlkeu  30242  numclwwlk2lem1  30291
  Copyright terms: Public domain W3C validator