![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frcond2 | Structured version Visualization version GIF version |
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frcond1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frcond1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frcond2 | ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frcond1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frcond1.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | frcond1 29213 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
4 | prex 5390 | . . . . 5 ⊢ {𝐴, 𝑏} ∈ V | |
5 | prex 5390 | . . . . 5 ⊢ {𝑏, 𝐶} ∈ V | |
6 | 4, 5 | prss 4781 | . . . 4 ⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
7 | 6 | bicomi 223 | . . 3 ⊢ ({{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
8 | 7 | reubii 3363 | . 2 ⊢ (∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
9 | 3, 8 | syl6ib 251 | 1 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ∃!wreu 3352 ⊆ wss 3911 {cpr 4589 ‘cfv 6497 Vtxcvtx 27950 Edgcedg 28001 FriendGraph cfrgr 29205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-iota 6449 df-fv 6505 df-frgr 29206 |
This theorem is referenced by: frgreu 29215 frgrncvvdeqlem9 29254 frgr2wwlkeu 29274 numclwwlk2lem1 29323 |
Copyright terms: Public domain | W3C validator |