| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frcond2 | Structured version Visualization version GIF version | ||
| Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frcond1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frcond1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frcond2 | ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frcond1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frcond1.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | frcond1 30202 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) |
| 4 | prex 5395 | . . . . 5 ⊢ {𝐴, 𝑏} ∈ V | |
| 5 | prex 5395 | . . . . 5 ⊢ {𝑏, 𝐶} ∈ V | |
| 6 | 4, 5 | prss 4787 | . . . 4 ⊢ (({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸) |
| 7 | 6 | bicomi 224 | . . 3 ⊢ ({{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
| 8 | 7 | reubii 3365 | . 2 ⊢ (∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
| 9 | 3, 8 | imbitrdi 251 | 1 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃!wreu 3354 ⊆ wss 3917 {cpr 4594 ‘cfv 6514 Vtxcvtx 28930 Edgcedg 28981 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-frgr 30195 |
| This theorem is referenced by: frgreu 30204 frgrncvvdeqlem9 30243 frgr2wwlkeu 30263 numclwwlk2lem1 30312 |
| Copyright terms: Public domain | W3C validator |