MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1 Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1 29618
Description: In a friendship graph, for each walk of length 𝑛 starting at a fixed vertex 𝑣 and ending not at this vertex, there is a unique vertex so that the walk extended by an edge to this vertex and an edge from this vertex to the first vertex of the walk is a value of operation 𝐻. If the walk is represented as a word, it is sufficient to add one vertex to the word to obtain the closed walk contained in the value of operation 𝐻, since in a word representing a closed walk the starting vertex is not repeated at the end. This theorem generally holds only for friendship graphs, because these guarantee that for the first and last vertex there is a (unique) third vertex "in between". (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
numclwwlk.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
Assertion
Ref Expression
numclwwlk2lem1 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝑄𝑁) β†’ βˆƒ!𝑣 ∈ 𝑉 (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝑉   𝑣,π‘Š,𝑀
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝐻(𝑀,𝑣,𝑛)   π‘Š(𝑛)

Proof of Theorem numclwwlk2lem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
2 numclwwlk.q . . . . . 6 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
31, 2numclwwlkovq 29616 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
433adant1 1130 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋𝑄𝑁) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)})
54eleq2d 2819 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝑄𝑁) ↔ π‘Š ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}))
6 fveq1 6887 . . . . . 6 (𝑀 = π‘Š β†’ (π‘€β€˜0) = (π‘Šβ€˜0))
76eqeq1d 2734 . . . . 5 (𝑀 = π‘Š β†’ ((π‘€β€˜0) = 𝑋 ↔ (π‘Šβ€˜0) = 𝑋))
8 fveq2 6888 . . . . . 6 (𝑀 = π‘Š β†’ (lastSβ€˜π‘€) = (lastSβ€˜π‘Š))
98neeq1d 3000 . . . . 5 (𝑀 = π‘Š β†’ ((lastSβ€˜π‘€) β‰  𝑋 ↔ (lastSβ€˜π‘Š) β‰  𝑋))
107, 9anbi12d 631 . . . 4 (𝑀 = π‘Š β†’ (((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋) ↔ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)))
1110elrab 3682 . . 3 (π‘Š ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)} ↔ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)))
125, 11bitrdi 286 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝑄𝑁) ↔ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))))
13 simpl1 1191 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ 𝐺 ∈ FriendGraph )
14 eqid 2732 . . . . . . . . . . . . 13 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
151, 14wwlknp 29086 . . . . . . . . . . . 12 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
16 peano2nn 12220 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„• β†’ (𝑁 + 1) ∈ β„•)
1716adantl 482 . . . . . . . . . . . . . . 15 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ (𝑁 + 1) ∈ β„•)
18 simpl 483 . . . . . . . . . . . . . . 15 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))
1917, 18jca 512 . . . . . . . . . . . . . 14 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ ((𝑁 + 1) ∈ β„• ∧ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
2019ex 413 . . . . . . . . . . . . 13 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) β†’ (𝑁 ∈ β„• β†’ ((𝑁 + 1) ∈ β„• ∧ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))))
21203adant3 1132 . . . . . . . . . . . 12 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑁 ∈ β„• β†’ ((𝑁 + 1) ∈ β„• ∧ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝑁 ∈ β„• β†’ ((𝑁 + 1) ∈ β„• ∧ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))))
23 lswlgt0cl 14515 . . . . . . . . . . 11 (((𝑁 + 1) ∈ β„• ∧ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1))) β†’ (lastSβ€˜π‘Š) ∈ 𝑉)
2422, 23syl6 35 . . . . . . . . . 10 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝑁 ∈ β„• β†’ (lastSβ€˜π‘Š) ∈ 𝑉))
2524adantr 481 . . . . . . . . 9 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (𝑁 ∈ β„• β†’ (lastSβ€˜π‘Š) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ β„• β†’ ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (lastSβ€˜π‘Š) ∈ 𝑉))
27263ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (lastSβ€˜π‘Š) ∈ 𝑉))
2827imp 407 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ (lastSβ€˜π‘Š) ∈ 𝑉)
29 eleq1 2821 . . . . . . . . . . 11 ((π‘Šβ€˜0) = 𝑋 β†’ ((π‘Šβ€˜0) ∈ 𝑉 ↔ 𝑋 ∈ 𝑉))
3029biimprd 247 . . . . . . . . . 10 ((π‘Šβ€˜0) = 𝑋 β†’ (𝑋 ∈ 𝑉 β†’ (π‘Šβ€˜0) ∈ 𝑉))
3130ad2antrl 726 . . . . . . . . 9 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (𝑋 ∈ 𝑉 β†’ (π‘Šβ€˜0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (π‘Šβ€˜0) ∈ 𝑉))
33323ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (π‘Šβ€˜0) ∈ 𝑉))
3433imp 407 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ (π‘Šβ€˜0) ∈ 𝑉)
35 neeq2 3004 . . . . . . . . . 10 (𝑋 = (π‘Šβ€˜0) β†’ ((lastSβ€˜π‘Š) β‰  𝑋 ↔ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)))
3635eqcoms 2740 . . . . . . . . 9 ((π‘Šβ€˜0) = 𝑋 β†’ ((lastSβ€˜π‘Š) β‰  𝑋 ↔ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)))
3736biimpa 477 . . . . . . . 8 (((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋) β†’ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0))
3837adantl 482 . . . . . . 7 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0))
3938adantl 482 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0))
4028, 34, 393jca 1128 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ ((lastSβ€˜π‘Š) ∈ 𝑉 ∧ (π‘Šβ€˜0) ∈ 𝑉 ∧ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)))
411, 14frcond2 29509 . . . . 5 (𝐺 ∈ FriendGraph β†’ (((lastSβ€˜π‘Š) ∈ 𝑉 ∧ (π‘Šβ€˜0) ∈ 𝑉 ∧ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)) β†’ βˆƒ!𝑣 ∈ 𝑉 ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))))
4213, 40, 41sylc 65 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ βˆƒ!𝑣 ∈ 𝑉 ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
43 simpl 483 . . . . . . . . . 10 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ π‘Š ∈ (𝑁 WWalksN 𝐺))
4443ad2antlr 725 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ π‘Š ∈ (𝑁 WWalksN 𝐺))
45 simpr 485 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ 𝑉)
46 nnnn0 12475 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
47463ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ β„•0)
4847ad2antrr 724 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑁 ∈ β„•0)
4944, 45, 483jca 1128 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ β„•0))
501, 14wwlksext2clwwlk 29299 . . . . . . . . . 10 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣 ∈ 𝑉) β†’ (({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) β†’ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
51503adant3 1132 . . . . . . . . 9 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) β†’ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
5251imp 407 . . . . . . . 8 (((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) ∧ ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))) β†’ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
5349, 52sylan 580 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))) β†’ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
541wwlknbp 29085 . . . . . . . . . . 11 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉))
5554simp3d 1144 . . . . . . . . . 10 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ π‘Š ∈ Word 𝑉)
5655ad2antrl 726 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ π‘Š ∈ Word 𝑉)
5756ad2antrr 724 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ π‘Š ∈ Word 𝑉)
5845adantr 481 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ 𝑣 ∈ 𝑉)
59 2z 12590 . . . . . . . . . . 11 2 ∈ β„€
60 nn0pzuz 12885 . . . . . . . . . . 11 ((𝑁 ∈ β„•0 ∧ 2 ∈ β„€) β†’ (𝑁 + 2) ∈ (β„€β‰₯β€˜2))
6146, 59, 60sylancl 586 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ (𝑁 + 2) ∈ (β„€β‰₯β€˜2))
62613ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑁 + 2) ∈ (β„€β‰₯β€˜2))
6362ad3antrrr 728 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ (𝑁 + 2) ∈ (β„€β‰₯β€˜2))
64 simpr 485 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
651, 14clwwlkext2edg 29298 . . . . . . . 8 (((π‘Š ∈ Word 𝑉 ∧ 𝑣 ∈ 𝑉 ∧ (𝑁 + 2) ∈ (β„€β‰₯β€˜2)) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
6657, 58, 63, 64, 65syl31anc 1373 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) ∧ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) β†’ ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
6753, 66impbida 799 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ↔ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
6845, 1eleqtrdi 2843 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (Vtxβ€˜πΊ))
6937anim2i 617 . . . . . . . . . . . 12 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)))
7069ad2antlr 725 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)))
7170simprd 496 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0))
72 numclwwlk2lem1lem 29584 . . . . . . . . . 10 ((𝑣 ∈ (Vtxβ€˜πΊ) ∧ π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘Š) β‰  (π‘Šβ€˜0)) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0) ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  (π‘Šβ€˜0)))
7368, 44, 71, 72syl3anc 1371 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0) ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  (π‘Šβ€˜0)))
74 eqeq2 2744 . . . . . . . . . . . . 13 (𝑋 = (π‘Šβ€˜0) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0)))
7574eqcoms 2740 . . . . . . . . . . . 12 ((π‘Šβ€˜0) = 𝑋 β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0)))
7675ad2antrl 726 . . . . . . . . . . 11 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0)))
7776ad2antlr 725 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0)))
7873simpld 495 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0))
7978neeq2d 3001 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  (π‘Šβ€˜0)))
8077, 79anbi12d 631 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)) ↔ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = (π‘Šβ€˜0) ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  (π‘Šβ€˜0))))
8173, 80mpbird 256 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)))
82 nncn 12216 . . . . . . . . . . . . . 14 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
83 2cnd 12286 . . . . . . . . . . . . . 14 (𝑁 ∈ β„• β†’ 2 ∈ β„‚)
8482, 83pncand 11568 . . . . . . . . . . . . 13 (𝑁 ∈ β„• β†’ ((𝑁 + 2) βˆ’ 2) = 𝑁)
85843ad2ant3 1135 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((𝑁 + 2) βˆ’ 2) = 𝑁)
8685ad2antrr 724 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((𝑁 + 2) βˆ’ 2) = 𝑁)
8786fveq2d 6892 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) = ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘))
8887neeq1d 3000 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)))
8988anbi2d 629 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)) ↔ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜π‘) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0))))
9081, 89mpbird 256 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)))
9190biantrud 532 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)))))
9261anim2i 617 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ (β„€β‰₯β€˜2)))
93923adant1 1130 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ (β„€β‰₯β€˜2)))
9493ad2antrr 724 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ (β„€β‰₯β€˜2)))
95 numclwwlk.h . . . . . . . . . 10 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
9695numclwwlkovh 29615 . . . . . . . . 9 ((𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐻(𝑁 + 2)) = {𝑀 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0))})
9794, 96syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (𝑋𝐻(𝑁 + 2)) = {𝑀 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0))})
9897eleq2d 2819 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ {𝑀 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0))}))
99 fveq1 6887 . . . . . . . . . 10 (𝑀 = (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) β†’ (π‘€β€˜0) = ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0))
10099eqeq1d 2734 . . . . . . . . 9 (𝑀 = (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋))
101 fveq1 6887 . . . . . . . . . 10 (𝑀 = (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) β†’ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) = ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)))
102101, 99neeq12d 3002 . . . . . . . . 9 (𝑀 = (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) β†’ ((π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0) ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0)))
103100, 102anbi12d 631 . . . . . . . 8 (𝑀 = (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) β†’ (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0)) ↔ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0))))
104103elrab 3682 . . . . . . 7 ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ {𝑀 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜((𝑁 + 2) βˆ’ 2)) β‰  (π‘€β€˜0))} ↔ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0))))
10598, 104bitr2di 287 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0) = 𝑋 ∧ ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜((𝑁 + 2) βˆ’ 2)) β‰  ((π‘Š ++ βŸ¨β€œπ‘£β€βŸ©)β€˜0))) ↔ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
10667, 91, 1053bitrd 304 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) ∧ 𝑣 ∈ 𝑉) β†’ (({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ↔ (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
107106reubidva 3392 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ (βˆƒ!𝑣 ∈ 𝑉 ({(lastSβ€˜π‘Š), 𝑣} ∈ (Edgβ€˜πΊ) ∧ {𝑣, (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ↔ βˆƒ!𝑣 ∈ 𝑉 (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
10842, 107mpbid 231 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋))) β†’ βˆƒ!𝑣 ∈ 𝑉 (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2)))
109108ex 413 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((π‘Šβ€˜0) = 𝑋 ∧ (lastSβ€˜π‘Š) β‰  𝑋)) β†’ βˆƒ!𝑣 ∈ 𝑉 (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
11012, 109sylbid 239 1 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (π‘Š ∈ (𝑋𝑄𝑁) β†’ βˆƒ!𝑣 ∈ 𝑉 (π‘Š ++ βŸ¨β€œπ‘£β€βŸ©) ∈ (𝑋𝐻(𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒ!wreu 3374  {crab 3432  Vcvv 3474  {cpr 4629  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541  Vtxcvtx 28245  Edgcedg 28296   WWalksN cwwlksn 29069   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329   FriendGraph cfrgr 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330  df-frgr 29501
This theorem is referenced by:  numclwlk2lem2f1o  29621
  Copyright terms: Public domain W3C validator