MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1 Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1 29320
Description: In a friendship graph, for each walk of length 𝑛 starting at a fixed vertex 𝑣 and ending not at this vertex, there is a unique vertex so that the walk extended by an edge to this vertex and an edge from this vertex to the first vertex of the walk is a value of operation 𝐻. If the walk is represented as a word, it is sufficient to add one vertex to the word to obtain the closed walk contained in the value of operation 𝐻, since in a word representing a closed walk the starting vertex is not repeated at the end. This theorem generally holds only for friendship graphs, because these guarantee that for the first and last vertex there is a (unique) third vertex "in between". (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk2lem1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑣,𝑊,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑊(𝑛)

Proof of Theorem numclwwlk2lem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 numclwwlk.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 29318 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
433adant1 1130 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
54eleq2d 2823 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
6 fveq1 6841 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
76eqeq1d 2738 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
8 fveq2 6842 . . . . . 6 (𝑤 = 𝑊 → (lastS‘𝑤) = (lastS‘𝑊))
98neeq1d 3003 . . . . 5 (𝑤 = 𝑊 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ 𝑋))
107, 9anbi12d 631 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
1110elrab 3645 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
125, 11bitrdi 286 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))))
13 simpl1 1191 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝐺 ∈ FriendGraph )
14 eqid 2736 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
151, 14wwlknp 28788 . . . . . . . . . . . 12 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
16 peano2nn 12165 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1716adantl 482 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
18 simpl 483 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))
1917, 18jca 512 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))))
2019ex 413 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
21203adant3 1132 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
23 lswlgt0cl 14457 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))) → (lastS‘𝑊) ∈ 𝑉)
2422, 23syl6 35 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2524adantr 481 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
27263ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
2827imp 407 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ∈ 𝑉)
29 eleq1 2825 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉𝑋𝑉))
3029biimprd 247 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3130ad2antrl 726 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋𝑉 → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
33323ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
3433imp 407 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉)
35 neeq2 3007 . . . . . . . . . 10 (𝑋 = (𝑊‘0) → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3635eqcoms 2744 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3736biimpa 477 . . . . . . . 8 (((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋) → (lastS‘𝑊) ≠ (𝑊‘0))
3837adantl 482 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ≠ (𝑊‘0))
3938adantl 482 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ≠ (𝑊‘0))
4028, 34, 393jca 1128 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
411, 14frcond2 29211 . . . . 5 (𝐺 ∈ FriendGraph → (((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))))
4213, 40, 41sylc 65 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
43 simpl 483 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4443ad2antlr 725 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
45 simpr 485 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣𝑉)
46 nnnn0 12420 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47463ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4847ad2antrr 724 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑁 ∈ ℕ0)
4944, 45, 483jca 1128 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0))
501, 14wwlksext2clwwlk 29001 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
51503adant3 1132 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
5251imp 407 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
5349, 52sylan 580 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
541wwlknbp 28787 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
5554simp3d 1144 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ Word 𝑉)
5655ad2antrl 726 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉)
5756ad2antrr 724 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑊 ∈ Word 𝑉)
5845adantr 481 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑣𝑉)
59 2z 12535 . . . . . . . . . . 11 2 ∈ ℤ
60 nn0pzuz 12830 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
6146, 59, 60sylancl 586 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
62613ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑁 + 2) ∈ (ℤ‘2))
6362ad3antrrr 728 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑁 + 2) ∈ (ℤ‘2))
64 simpr 485 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
651, 14clwwlkext2edg 29000 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑣𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6657, 58, 63, 64, 65syl31anc 1373 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6753, 66impbida 799 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
6845, 1eleqtrdi 2848 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣 ∈ (Vtx‘𝐺))
6937anim2i 617 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7069ad2antlr 725 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7170simprd 496 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (lastS‘𝑊) ≠ (𝑊‘0))
72 numclwwlk2lem1lem 29286 . . . . . . . . . 10 ((𝑣 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
7368, 44, 71, 72syl3anc 1371 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
74 eqeq2 2748 . . . . . . . . . . . . 13 (𝑋 = (𝑊‘0) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7574eqcoms 2744 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7675ad2antrl 726 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7776ad2antlr 725 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7873simpld 495 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0))
7978neeq2d 3004 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
8077, 79anbi12d 631 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0))))
8173, 80mpbird 256 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
82 nncn 12161 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
83 2cnd 12231 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8482, 83pncand 11513 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
85843ad2ant3 1135 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁)
8685ad2antrr 724 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑁 + 2) − 2) = 𝑁)
8786fveq2d 6846 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁))
8887neeq1d 3003 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
8988anbi2d 629 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
9081, 89mpbird 256 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9190biantrud 532 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))))
9261anim2i 617 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
93923adant1 1130 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
9493ad2antrr 724 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
95 numclwwlk.h . . . . . . . . . 10 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
9695numclwwlkovh 29317 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
9794, 96syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
9897eleq2d 2823 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
99 fveq1 6841 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘0) = ((𝑊 ++ ⟨“𝑣”⟩)‘0))
10099eqeq1d 2738 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋))
101 fveq1 6841 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)))
102101, 99neeq12d 3005 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
103100, 102anbi12d 631 . . . . . . . 8 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
104103elrab 3645 . . . . . . 7 ((𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
10598, 104bitr2di 287 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
10667, 91, 1053bitrd 304 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
107106reubidva 3369 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
10842, 107mpbid 231 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
109108ex 413 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11012, 109sylbid 239 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  ∃!wreu 3351  {crab 3407  Vcvv 3445  {cpr 4588  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  ..^cfzo 13567  chash 14230  Word cword 14402  lastSclsw 14450   ++ cconcat 14458  ⟨“cs1 14483  Vtxcvtx 27947  Edgcedg 27998   WWalksN cwwlksn 28771   ClWWalksN cclwwlkn 28968  ClWWalksNOncclwwlknon 29031   FriendGraph cfrgr 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-wwlks 28775  df-wwlksn 28776  df-clwwlk 28926  df-clwwlkn 28969  df-clwwlknon 29032  df-frgr 29203
This theorem is referenced by:  numclwlk2lem2f1o  29323
  Copyright terms: Public domain W3C validator