MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeu Structured version   Visualization version   GIF version

Theorem frgr2wwlkeu 29313
Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlkeu ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐺,𝑐   𝑉,𝑐

Proof of Theorem frgr2wwlkeu
StepHypRef Expression
1 df-3an 1090 . . . 4 ((𝐴𝑉𝐵𝑉𝐴𝐵) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵))
2 frgr2wwlkeu.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 eqid 2737 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3frcond2 29253 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐵𝑉𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
51, 4biimtrrid 242 . . 3 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
653impib 1117 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))
7 frgrusgr 29247 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
8 usgrumgr 28172 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
9 3anan32 1098 . . . . . . 7 ((𝐴𝑉𝑐𝑉𝐵𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉))
102, 3umgrwwlks2on 28944 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝑐𝑉𝐵𝑉)) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1110ex 414 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝐴𝑉𝑐𝑉𝐵𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
129, 11biimtrrid 242 . . . . . 6 (𝐺 ∈ UMGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
137, 8, 123syl 18 . . . . 5 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
1413impl 457 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1514reubidva 3372 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
16153adant3 1133 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
176, 16mpbird 257 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  ∃!wreu 3354  {cpr 4593  cfv 6501  (class class class)co 7362  2c2 12215  ⟨“cs3 14738  Vtxcvtx 27989  Edgcedg 28040  UMGraphcumgr 28074  USGraphcusgr 28142   WWalksNOn cwwlksnon 28814   FriendGraph cfrgr 29244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-ac2 10406  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-ac 10059  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-s1 14491  df-s2 14744  df-s3 14745  df-edg 28041  df-uhgr 28051  df-upgr 28075  df-umgr 28076  df-usgr 28144  df-wlks 28589  df-wwlks 28817  df-wwlksn 28818  df-wwlksnon 28819  df-frgr 29245
This theorem is referenced by:  frgr2wwlkn0  29314  frgr2wwlk1  29315  frgr2wwlkeqm  29317
  Copyright terms: Public domain W3C validator