MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeu Structured version   Visualization version   GIF version

Theorem frgr2wwlkeu 27877
Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlkeu ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐺,𝑐   𝑉,𝑐

Proof of Theorem frgr2wwlkeu
StepHypRef Expression
1 df-3an 1071 . . . 4 ((𝐴𝑉𝐵𝑉𝐴𝐵) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵))
2 frgr2wwlkeu.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 eqid 2773 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3frcond2 27817 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐵𝑉𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
51, 4syl5bir 235 . . 3 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
653impib 1097 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))
7 frgrusgr 27810 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
8 usgrumgr 26683 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
9 3anan32 1079 . . . . . . 7 ((𝐴𝑉𝑐𝑉𝐵𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉))
102, 3umgrwwlks2on 27479 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝑐𝑉𝐵𝑉)) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1110ex 405 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝐴𝑉𝑐𝑉𝐵𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
129, 11syl5bir 235 . . . . . 6 (𝐺 ∈ UMGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
137, 8, 123syl 18 . . . . 5 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
1413impl 448 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1514reubidva 3322 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
16153adant3 1113 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
176, 16mpbird 249 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  ∃!wreu 3085  {cpr 4438  cfv 6186  (class class class)co 6975  2c2 11494  ⟨“cs3 14065  Vtxcvtx 26500  Edgcedg 26551  UMGraphcumgr 26585  USGraphcusgr 26653   WWalksNOn cwwlksnon 27329   FriendGraph cfrgr 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-ac2 9682  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-ifp 1045  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-dju 9123  df-card 9161  df-ac 9335  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-xnn0 11779  df-z 11793  df-uz 12058  df-fz 12708  df-fzo 12849  df-hash 13505  df-word 13672  df-concat 13733  df-s1 13758  df-s2 14071  df-s3 14072  df-edg 26552  df-uhgr 26562  df-upgr 26586  df-umgr 26587  df-usgr 26655  df-wlks 27100  df-wwlks 27332  df-wwlksn 27333  df-wwlksnon 27334  df-frgr 27807
This theorem is referenced by:  frgr2wwlkn0  27878  frgr2wwlk1  27879  frgr2wwlkeqm  27881
  Copyright terms: Public domain W3C validator