MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeu Structured version   Visualization version   GIF version

Theorem frgr2wwlkeu 28112
Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlkeu ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐺,𝑐   𝑉,𝑐

Proof of Theorem frgr2wwlkeu
StepHypRef Expression
1 df-3an 1086 . . . 4 ((𝐴𝑉𝐵𝑉𝐴𝐵) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵))
2 frgr2wwlkeu.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 eqid 2798 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3frcond2 28052 . . . 4 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐵𝑉𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
51, 4syl5bir 246 . . 3 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
653impib 1113 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))
7 frgrusgr 28046 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
8 usgrumgr 26972 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
9 3anan32 1094 . . . . . . 7 ((𝐴𝑉𝑐𝑉𝐵𝑉) ↔ ((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉))
102, 3umgrwwlks2on 27743 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝑐𝑉𝐵𝑉)) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1110ex 416 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝐴𝑉𝑐𝑉𝐵𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
129, 11syl5bir 246 . . . . . 6 (𝐺 ∈ UMGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
137, 8, 123syl 18 . . . . 5 (𝐺 ∈ FriendGraph → (((𝐴𝑉𝐵𝑉) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))))
1413impl 459 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) ∧ 𝑐𝑉) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
1514reubidva 3341 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉)) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
16153adant3 1129 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))
176, 16mpbird 260 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  ∃!wreu 3108  {cpr 4527  cfv 6324  (class class class)co 7135  2c2 11680  ⟨“cs3 14195  Vtxcvtx 26789  Edgcedg 26840  UMGraphcumgr 26874  USGraphcusgr 26942   WWalksNOn cwwlksnon 27613   FriendGraph cfrgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-umgr 26876  df-usgr 26944  df-wlks 27389  df-wwlks 27616  df-wwlksn 27617  df-wwlksnon 27618  df-frgr 28044
This theorem is referenced by:  frgr2wwlkn0  28113  frgr2wwlk1  28114  frgr2wwlkeqm  28116
  Copyright terms: Public domain W3C validator