![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgr2wwlkeu | Structured version Visualization version GIF version |
Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.) |
Ref | Expression |
---|---|
frgr2wwlkeu.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frgr2wwlkeu | ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵)) | |
2 | frgr2wwlkeu.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqid 2740 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 2, 3 | frcond2 30299 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
5 | 1, 4 | biimtrrid 243 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
6 | 5 | 3impib 1116 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))) |
7 | frgrusgr 30293 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
8 | usgrumgr 29216 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
9 | 3anan32 1097 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉)) | |
10 | 2, 3 | umgrwwlks2on 29990 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
11 | 10 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → ((𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
12 | 9, 11 | biimtrrid 243 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
13 | 7, 8, 12 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ FriendGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
14 | 13 | impl 455 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
15 | 14 | reubidva 3404 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
17 | 6, 16 | mpbird 257 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃!wreu 3386 {cpr 4650 ‘cfv 6573 (class class class)co 7448 2c2 12348 〈“cs3 14891 Vtxcvtx 29031 Edgcedg 29082 UMGraphcumgr 29116 USGraphcusgr 29184 WWalksNOn cwwlksnon 29860 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-edg 29083 df-uhgr 29093 df-upgr 29117 df-umgr 29118 df-usgr 29186 df-wlks 29635 df-wwlks 29863 df-wwlksn 29864 df-wwlksnon 29865 df-frgr 30291 |
This theorem is referenced by: frgr2wwlkn0 30360 frgr2wwlk1 30361 frgr2wwlkeqm 30363 |
Copyright terms: Public domain | W3C validator |