| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgr2wwlkeu | Structured version Visualization version GIF version | ||
| Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgr2wwlkeu.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frgr2wwlkeu | ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵)) | |
| 2 | frgr2wwlkeu.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 4 | 2, 3 | frcond2 30215 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 5 | 1, 4 | biimtrrid 243 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 6 | 5 | 3impib 1116 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))) |
| 7 | frgrusgr 30209 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 8 | usgrumgr 29130 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 9 | 3anan32 1096 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉)) | |
| 10 | 2, 3 | umgrwwlks2on 29906 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 11 | 10 | ex 412 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → ((𝐴 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
| 12 | 9, 11 | biimtrrid 243 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
| 13 | 7, 8, 12 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ FriendGraph → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺))))) |
| 14 | 13 | impl 455 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 15 | 14 | reubidva 3359 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑐 ∈ 𝑉 ({𝐴, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝐵} ∈ (Edg‘𝐺)))) |
| 17 | 6, 16 | mpbird 257 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃!wreu 3341 {cpr 4579 ‘cfv 6482 (class class class)co 7349 2c2 12183 〈“cs3 14749 Vtxcvtx 28945 Edgcedg 28996 UMGraphcumgr 29030 USGraphcusgr 29098 WWalksNOn cwwlksnon 29776 FriendGraph cfrgr 30206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-edg 28997 df-uhgr 29007 df-upgr 29031 df-umgr 29032 df-usgr 29100 df-wlks 29549 df-wwlks 29779 df-wwlksn 29780 df-wwlksnon 29781 df-frgr 30207 |
| This theorem is referenced by: frgr2wwlkn0 30276 frgr2wwlk1 30277 frgr2wwlkeqm 30279 |
| Copyright terms: Public domain | W3C validator |