MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpoins2fg Structured version   Visualization version   GIF version

Theorem frpoins2fg 6319
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.)
Hypotheses
Ref Expression
frpoins2fg.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
frpoins2fg.2 𝑦𝜓
frpoins2fg.3 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
frpoins2fg ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem frpoins2fg
StepHypRef Expression
1 sbsbc 3759 . . . . 5 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
2 frpoins2fg.2 . . . . . 6 𝑦𝜓
3 frpoins2fg.3 . . . . . 6 (𝑦 = 𝑧 → (𝜑𝜓))
42, 3sbiev 2313 . . . . 5 ([𝑧 / 𝑦]𝜑𝜓)
51, 4bitr3i 277 . . . 4 ([𝑧 / 𝑦]𝜑𝜓)
65ralbii 3076 . . 3 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓)
7 frpoins2fg.1 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
87adantl 481 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
96, 8biimtrid 242 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
109frpoinsg 6318 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1783  [wsb 2065  wcel 2109  wral 3045  [wsbc 3755   Po wpo 5546   Fr wfr 5590   Se wse 5591  Predcpred 6275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-po 5548  df-fr 5593  df-se 5594  df-xp 5646  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276
This theorem is referenced by:  frpoins2g  6320  wfis2fg  6328
  Copyright terms: Public domain W3C validator