| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frpoins2fg | Structured version Visualization version GIF version | ||
| Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| frpoins2fg.1 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
| frpoins2fg.2 | ⊢ Ⅎ𝑦𝜓 |
| frpoins2fg.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| frpoins2fg | ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3776 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
| 2 | frpoins2fg.2 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
| 3 | frpoins2fg.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbiev 2313 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
| 6 | 5 | ralbii 3081 | . . 3 ⊢ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓) |
| 7 | frpoins2fg.1 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
| 9 | 6, 8 | biimtrid 242 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
| 10 | 9 | frpoinsg 6345 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1782 [wsb 2063 ∈ wcel 2107 ∀wral 3050 [wsbc 3772 Po wpo 5572 Fr wfr 5616 Se wse 5617 Predcpred 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-po 5574 df-fr 5619 df-se 5620 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 |
| This theorem is referenced by: frpoins2g 6347 wfis2fg 6358 |
| Copyright terms: Public domain | W3C validator |