MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2 Structured version   Visualization version   GIF version

Theorem fun2 6637
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2
StepHypRef Expression
1 fun 6636 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶))
2 unidm 4086 . . 3 (𝐶𝐶) = 𝐶
3 feq3 6583 . . 3 ((𝐶𝐶) = 𝐶 → ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
42, 3ax-mp 5 . 2 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 4sylib 217 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  cun 3885  cin 3886  c0 4256  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fun2d  6638  axlowdimlem5  27314  axlowdimlem7  27316  resf1o  31065  locfinref  31791  breprexplema  32610
  Copyright terms: Public domain W3C validator