![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2 | Structured version Visualization version GIF version |
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
fun2 | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun 6785 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶)) | |
2 | unidm 4180 | . . 3 ⊢ (𝐶 ∪ 𝐶) = 𝐶 | |
3 | feq3 6732 | . . 3 ⊢ ((𝐶 ∪ 𝐶) = 𝐶 → ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
5 | 1, 4 | sylib 218 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 ⟶wf 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6577 df-fn 6578 df-f 6579 |
This theorem is referenced by: fun2d 6787 axlowdimlem5 28981 axlowdimlem7 28983 resf1o 32746 locfinref 33789 breprexplema 34609 |
Copyright terms: Public domain | W3C validator |