| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun2 | Structured version Visualization version GIF version | ||
| Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| fun2 | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun 6749 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶)) | |
| 2 | unidm 4137 | . . 3 ⊢ (𝐶 ∪ 𝐶) = 𝐶 | |
| 3 | feq3 6697 | . . 3 ⊢ ((𝐶 ∪ 𝐶) = 𝐶 → ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 ⟶wf 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6542 df-fn 6543 df-f 6544 |
| This theorem is referenced by: fun2d 6751 axlowdimlem5 28890 axlowdimlem7 28892 resf1o 32668 locfinref 33774 breprexplema 34579 |
| Copyright terms: Public domain | W3C validator |