MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2d Structured version   Visualization version   GIF version

Theorem fun2d 6785
Description: The union of functions with disjoint domains is a function, deduction version of fun2 6784. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
fun2d.f (𝜑𝐹:𝐴𝐶)
fun2d.g (𝜑𝐺:𝐵𝐶)
fun2d.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fun2d (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2d
StepHypRef Expression
1 fun2d.f . 2 (𝜑𝐹:𝐴𝐶)
2 fun2d.g . 2 (𝜑𝐺:𝐵𝐶)
3 fun2d.i . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fun2 6784 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl21anc 837 1 (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3974  cin 3975  c0 4352  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fresaun  6792  mapunen  9212  ac6sfi  9348  axdc3lem4  10522  fseq1p1m1  13658  uhgrun  29109  upgrun  29153  umgrun  29155  elrspunidl  33421  lbsdiflsp0  33639  reprsuc  34592  evlselvlem  42541  evlselv  42542
  Copyright terms: Public domain W3C validator