| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun2d | Structured version Visualization version GIF version | ||
| Description: The union of functions with disjoint domains is a function, deduction version of fun2 6726. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| fun2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| fun2d.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| fun2d.i | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| fun2d | ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 2 | fun2d.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
| 3 | fun2d.i | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fun2 6726 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
| 5 | 1, 2, 3, 4 | syl21anc 837 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fresaun 6734 mapunen 9116 ac6sfi 9238 axdc3lem4 10413 fseq1p1m1 13566 uhgrun 29008 upgrun 29052 umgrun 29054 elrspunidl 33406 lbsdiflsp0 33629 reprsuc 34613 dvun 42354 evlselvlem 42581 evlselv 42582 |
| Copyright terms: Public domain | W3C validator |