Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun2d | Structured version Visualization version GIF version |
Description: The union of functions with disjoint domains is a function, deduction version of fun2 6667. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
fun2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fun2d.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
fun2d.i | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fun2d | ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
2 | fun2d.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
3 | fun2d.i | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fun2 6667 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
5 | 1, 2, 3, 4 | syl21anc 836 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: fresaun 6675 mapunen 8971 ac6sfi 9102 axdc3lem4 10255 fseq1p1m1 13376 uhgrun 27489 upgrun 27533 umgrun 27535 elrspunidl 31651 lbsdiflsp0 31752 reprsuc 32640 |
Copyright terms: Public domain | W3C validator |