Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun2d | Structured version Visualization version GIF version |
Description: The union of functions with disjoint domains is a function, deduction version of fun2 6682. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
fun2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fun2d.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
fun2d.i | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fun2d | ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
2 | fun2d.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
3 | fun2d.i | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fun2 6682 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
5 | 1, 2, 3, 4 | syl21anc 835 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ cun 3895 ∩ cin 3896 ∅c0 4268 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6475 df-fn 6476 df-f 6477 |
This theorem is referenced by: fresaun 6690 mapunen 9003 ac6sfi 9144 axdc3lem4 10302 fseq1p1m1 13423 uhgrun 27674 upgrun 27718 umgrun 27720 elrspunidl 31844 lbsdiflsp0 31946 reprsuc 32836 |
Copyright terms: Public domain | W3C validator |