MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2d Structured version   Visualization version   GIF version

Theorem fun2d 6634
Description: The union of functions with disjoint domains is a function, deduction version of fun2 6633. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
fun2d.f (𝜑𝐹:𝐴𝐶)
fun2d.g (𝜑𝐺:𝐵𝐶)
fun2d.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fun2d (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2d
StepHypRef Expression
1 fun2d.f . 2 (𝜑𝐹:𝐴𝐶)
2 fun2d.g . 2 (𝜑𝐺:𝐵𝐶)
3 fun2d.i . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fun2 6633 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl21anc 834 1 (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3889  cin 3890  c0 4261  wf 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  fresaun  6641  mapunen  8898  ac6sfi  9019  axdc3lem4  10193  fseq1p1m1  13312  uhgrun  27425  upgrun  27469  umgrun  27471  elrspunidl  31585  lbsdiflsp0  31686  reprsuc  32574
  Copyright terms: Public domain W3C validator