![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2d | Structured version Visualization version GIF version |
Description: The union of functions with disjoint domains is a function, deduction version of fun2 6754. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
fun2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fun2d.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
fun2d.i | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
fun2d | ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
2 | fun2d.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
3 | fun2d.i | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fun2 6754 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
5 | 1, 2, 3, 4 | syl21anc 836 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: fresaun 6762 mapunen 9148 ac6sfi 9289 axdc3lem4 10450 fseq1p1m1 13579 uhgrun 28589 upgrun 28633 umgrun 28635 elrspunidl 32808 lbsdiflsp0 32987 reprsuc 33913 evlselvlem 41460 evlselv 41461 |
Copyright terms: Public domain | W3C validator |