Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem5 Structured version   Visualization version   GIF version

Theorem axlowdimlem5 26716
 Description: Lemma for axlowdim 26731. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypotheses
Ref Expression
axlowdimlem4.1 𝐴 ∈ ℝ
axlowdimlem4.2 𝐵 ∈ ℝ
Assertion
Ref Expression
axlowdimlem5 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem5
StepHypRef Expression
1 axlowdimlem4.1 . . . . . 6 𝐴 ∈ ℝ
2 axlowdimlem4.2 . . . . . 6 𝐵 ∈ ℝ
31, 2axlowdimlem4 26715 . . . . 5 {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:(1...2)⟶ℝ
4 axlowdimlem1 26712 . . . . 5 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
53, 4pm3.2i 473 . . . 4 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:(1...2)⟶ℝ ∧ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ)
6 axlowdimlem2 26713 . . . 4 ((1...2) ∩ (3...𝑁)) = ∅
7 fun2 6515 . . . 4 ((({⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:(1...2)⟶ℝ ∧ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ) ∧ ((1...2) ∩ (3...𝑁)) = ∅) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):((1...2) ∪ (3...𝑁))⟶ℝ)
85, 6, 7mp2an 690 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):((1...2) ∪ (3...𝑁))⟶ℝ
9 axlowdimlem3 26714 . . . 4 (𝑁 ∈ (ℤ‘2) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
109feq2d 6474 . . 3 (𝑁 ∈ (ℤ‘2) → (({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):(1...𝑁)⟶ℝ ↔ ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):((1...2) ∪ (3...𝑁))⟶ℝ))
118, 10mpbiri 260 . 2 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):(1...𝑁)⟶ℝ)
12 eluz2nn 12261 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
13 elee 26664 . . 3 (𝑁 ∈ ℕ → (({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):(1...𝑁)⟶ℝ))
1412, 13syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})):(1...𝑁)⟶ℝ))
1511, 14mpbird 259 1 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ∪ cun 3910   ∩ cin 3911  ∅c0 4267  {csn 4541  {cpr 4543  ⟨cop 4547   × cxp 5527  ⟶wf 6325  ‘cfv 6329  (class class class)co 7131  ℝcr 10512  0cc0 10513  1c1 10514  ℕcn 11614  2c2 11669  3c3 11670  ℤ≥cuz 12220  ...cfz 12874  𝔼cee 26658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-er 8265  df-map 8384  df-en 8486  df-dom 8487  df-sdom 8488  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-nn 11615  df-2 11677  df-3 11678  df-n0 11875  df-z 11959  df-uz 12221  df-fz 12875  df-ee 26661 This theorem is referenced by:  axlowdimlem6  26717  axlowdimlem17  26728  axlowdim2  26730  axlowdim  26731
 Copyright terms: Public domain W3C validator