![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem5 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28486. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
axlowdimlem4.1 | β’ π΄ β β |
axlowdimlem4.2 | β’ π΅ β β |
Ref | Expression |
---|---|
axlowdimlem5 | β’ (π β (β€β₯β2) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})) β (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem4.1 | . . . . . 6 β’ π΄ β β | |
2 | axlowdimlem4.2 | . . . . . 6 β’ π΅ β β | |
3 | 1, 2 | axlowdimlem4 28470 | . . . . 5 β’ {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ |
4 | axlowdimlem1 28467 | . . . . 5 β’ ((3...π) Γ {0}):(3...π)βΆβ | |
5 | 3, 4 | pm3.2i 469 | . . . 4 β’ ({β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ β§ ((3...π) Γ {0}):(3...π)βΆβ) |
6 | axlowdimlem2 28468 | . . . 4 β’ ((1...2) β© (3...π)) = β | |
7 | fun2 6753 | . . . 4 β’ ((({β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ β§ ((3...π) Γ {0}):(3...π)βΆβ) β§ ((1...2) β© (3...π)) = β ) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):((1...2) βͺ (3...π))βΆβ) | |
8 | 5, 6, 7 | mp2an 688 | . . 3 β’ ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):((1...2) βͺ (3...π))βΆβ |
9 | axlowdimlem3 28469 | . . . 4 β’ (π β (β€β₯β2) β (1...π) = ((1...2) βͺ (3...π))) | |
10 | 9 | feq2d 6702 | . . 3 β’ (π β (β€β₯β2) β (({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):(1...π)βΆβ β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):((1...2) βͺ (3...π))βΆβ)) |
11 | 8, 10 | mpbiri 257 | . 2 β’ (π β (β€β₯β2) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):(1...π)βΆβ) |
12 | eluz2nn 12872 | . . 3 β’ (π β (β€β₯β2) β π β β) | |
13 | elee 28419 | . . 3 β’ (π β β β (({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})) β (πΌβπ) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):(1...π)βΆβ)) | |
14 | 12, 13 | syl 17 | . 2 β’ (π β (β€β₯β2) β (({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})) β (πΌβπ) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})):(1...π)βΆβ)) |
15 | 11, 14 | mpbird 256 | 1 β’ (π β (β€β₯β2) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})) β (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βͺ cun 3945 β© cin 3946 β c0 4321 {csn 4627 {cpr 4629 β¨cop 4633 Γ cxp 5673 βΆwf 6538 βcfv 6542 (class class class)co 7411 βcr 11111 0cc0 11112 1c1 11113 βcn 12216 2c2 12271 3c3 12272 β€β₯cuz 12826 ...cfz 13488 πΌcee 28413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-ee 28416 |
This theorem is referenced by: axlowdimlem6 28472 axlowdimlem17 28483 axlowdim2 28485 axlowdim 28486 |
Copyright terms: Public domain | W3C validator |