| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sralem | Structured version Visualization version GIF version | ||
| Description: Lemma for srabase 21109 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| sralem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| sralem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
| sralem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
| sralem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
| Ref | Expression |
|---|---|
| sralem | ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralem.1 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | sralem.2 | . . . . . 6 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
| 3 | 2 | necomi 2982 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| 4 | 1, 3 | setsnid 17116 | . . . 4 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
| 5 | sralem.3 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
| 6 | 5 | necomi 2982 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 7 | 1, 6 | setsnid 17116 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 8 | sralem.4 | . . . . . 6 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
| 9 | 8 | necomi 2982 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
| 10 | 1, 9 | setsnid 17116 | . . . 4 ⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 11 | 4, 7, 10 | 3eqtri 2758 | . . 3 ⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 15 | sraval 21107 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 17 | 13, 16 | eqtrd 2766 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 18 | 17 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 19 | 11, 18 | eqtr4id 2785 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 20 | 1 | str0 17097 | . . 3 ⊢ ∅ = (𝐸‘∅) |
| 21 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
| 23 | fv2prc 6864 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 24 | 12, 23 | sylan9eqr 2788 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 25 | 24 | fveq2d 6826 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
| 26 | 20, 22, 25 | 3eqtr4a 2792 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 27 | 19, 26 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 〈cop 4582 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 Slot cslot 17089 ndxcnx 17101 Basecbs 17117 ↾s cress 17138 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 ·𝑖cip 17163 subringAlg csra 21103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17072 df-slot 17090 df-sra 21105 |
| This theorem is referenced by: srabase 21109 sraaddg 21110 sramulr 21111 sratset 21115 srads 21117 cchhllem 28863 |
| Copyright terms: Public domain | W3C validator |