| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sralem | Structured version Visualization version GIF version | ||
| Description: Lemma for srabase 21099 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| sralem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| sralem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
| sralem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
| sralem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
| Ref | Expression |
|---|---|
| sralem | ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralem.1 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | sralem.2 | . . . . . 6 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
| 3 | 2 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| 4 | 1, 3 | setsnid 17137 | . . . 4 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
| 5 | sralem.3 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
| 6 | 5 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 7 | 1, 6 | setsnid 17137 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 8 | sralem.4 | . . . . . 6 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
| 9 | 8 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
| 10 | 1, 9 | setsnid 17137 | . . . 4 ⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 11 | 4, 7, 10 | 3eqtri 2756 | . . 3 ⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 15 | sraval 21097 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 17 | 13, 16 | eqtrd 2764 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 18 | 17 | fveq2d 6830 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 19 | 11, 18 | eqtr4id 2783 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 20 | 1 | str0 17118 | . . 3 ⊢ ∅ = (𝐸‘∅) |
| 21 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
| 23 | fv2prc 6869 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 24 | 12, 23 | sylan9eqr 2786 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 25 | 24 | fveq2d 6830 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
| 26 | 20, 22, 25 | 3eqtr4a 2790 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 27 | 19, 26 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 〈cop 4585 ‘cfv 6486 (class class class)co 7353 sSet csts 17092 Slot cslot 17110 ndxcnx 17122 Basecbs 17138 ↾s cress 17159 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 ·𝑖cip 17184 subringAlg csra 21093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-sets 17093 df-slot 17111 df-sra 21095 |
| This theorem is referenced by: srabase 21099 sraaddg 21100 sramulr 21101 sratset 21105 srads 21107 cchhllem 28850 |
| Copyright terms: Public domain | W3C validator |