MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 19450
Description: Lemma for srabase 19451 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot 𝑁
sralem.2 𝑁 ∈ ℕ
sralem.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 473 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 19449 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 586 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2798 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6378 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 sralem.1 . . . . . 6 𝐸 = Slot 𝑁
9 sralem.2 . . . . . 6 𝑁 ∈ ℕ
108, 9ndxid 16157 . . . . 5 𝐸 = Slot (𝐸‘ndx)
11 sralem.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
129nnrei 11283 . . . . . . . . . 10 𝑁 ∈ ℝ
13 5re 11360 . . . . . . . . . 10 5 ∈ ℝ
1412, 13ltnei 10414 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
1514necomd 2991 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
16 5lt8 11471 . . . . . . . . . 10 5 < 8
17 8re 11372 . . . . . . . . . . 11 8 ∈ ℝ
1813, 17, 12lttri 10416 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
1916, 18mpan 681 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
2013, 12ltnei 10414 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
2119, 20syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
2215, 21jaoi 883 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
2311, 22ax-mp 5 . . . . . 6 𝑁 ≠ 5
248, 9ndxarg 16156 . . . . . . 7 (𝐸‘ndx) = 𝑁
25 scandx 16286 . . . . . . 7 (Scalar‘ndx) = 5
2624, 25neeq12i 3002 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2723, 26mpbir 222 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
2810, 27setsnid 16188 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
29 5lt6 11458 . . . . . . . . . . 11 5 < 6
30 6re 11364 . . . . . . . . . . . 12 6 ∈ ℝ
3112, 13, 30lttri 10416 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
3229, 31mpan2 682 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
3312, 30ltnei 10414 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
3432, 33syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
3534necomd 2991 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
36 6lt8 11470 . . . . . . . . . 10 6 < 8
3730, 17, 12lttri 10416 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3836, 37mpan 681 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3930, 12ltnei 10414 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
4038, 39syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
4135, 40jaoi 883 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
4211, 41ax-mp 5 . . . . . 6 𝑁 ≠ 6
43 vscandx 16288 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
4424, 43neeq12i 3002 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
4542, 44mpbir 222 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
4610, 45setsnid 16188 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
4712, 13, 17lttri 10416 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
4816, 47mpan2 682 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
4912, 17ltnei 10414 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
5048, 49syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
5150necomd 2991 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
5217, 12ltnei 10414 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
5351, 52jaoi 883 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
5411, 53ax-mp 5 . . . . . 6 𝑁 ≠ 8
55 ipndx 16295 . . . . . . 7 (·𝑖‘ndx) = 8
5624, 55neeq12i 3002 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5754, 56mpbir 222 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
5810, 57setsnid 16188 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5928, 46, 583eqtri 2790 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
607, 59syl6reqr 2817 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
618str0 16184 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6367 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 472 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fvprc 6367 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
6564fveq1d 6376 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
66 0fv 6414 . . . . . 6 (∅‘𝑆) = ∅
6765, 66syl6eq 2814 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
681, 67sylan9eqr 2820 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6968fveq2d 6378 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
7061, 63, 693eqtr4a 2824 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
7160, 70pm2.61ian 846 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2936  Vcvv 3349  wss 3731  c0 4078  cop 4339   class class class wbr 4808  cfv 6067  (class class class)co 6841   < clt 10327  cn 11273  5c5 11329  6c6 11330  8c8 11332  ndxcnx 16128   sSet csts 16129  Slot cslot 16130  Basecbs 16131  s cress 16132  .rcmulr 16216  Scalarcsca 16218   ·𝑠 cvsca 16219  ·𝑖cip 16220  subringAlg csra 19441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-ndx 16134  df-slot 16135  df-sets 16138  df-sca 16231  df-vsca 16232  df-ip 16233  df-sra 19445
This theorem is referenced by:  srabase  19451  sraaddg  19452  sramulr  19453  sratset  19457  srads  19459  cchhllem  26057
  Copyright terms: Public domain W3C validator