| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sralem | Structured version Visualization version GIF version | ||
| Description: Lemma for srabase 21084 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| sralem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| sralem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
| sralem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
| sralem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
| Ref | Expression |
|---|---|
| sralem | ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralem.1 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | sralem.2 | . . . . . 6 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
| 3 | 2 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| 4 | 1, 3 | setsnid 17178 | . . . 4 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
| 5 | sralem.3 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
| 6 | 5 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 7 | 1, 6 | setsnid 17178 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 8 | sralem.4 | . . . . . 6 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
| 9 | 8 | necomi 2979 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
| 10 | 1, 9 | setsnid 17178 | . . . 4 ⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 11 | 4, 7, 10 | 3eqtri 2756 | . . 3 ⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 15 | sraval 21082 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 17 | 13, 16 | eqtrd 2764 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 18 | 17 | fveq2d 6862 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
| 19 | 11, 18 | eqtr4id 2783 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 20 | 1 | str0 17159 | . . 3 ⊢ ∅ = (𝐸‘∅) |
| 21 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
| 23 | fv2prc 6903 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
| 24 | 12, 23 | sylan9eqr 2786 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
| 25 | 24 | fveq2d 6862 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
| 26 | 20, 22, 25 | 3eqtr4a 2790 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| 27 | 19, 26 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 Slot cslot 17151 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 subringAlg csra 21078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 df-slot 17152 df-sra 21080 |
| This theorem is referenced by: srabase 21084 sraaddg 21085 sramulr 21086 sratset 21090 srads 21092 cchhllem 28814 |
| Copyright terms: Public domain | W3C validator |