MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 21139
Description: Lemma for srabase 21140 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot (𝐸‘ndx)
sralem.2 (Scalar‘ndx) ≠ (𝐸‘ndx)
sralem.3 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
sralem.4 (·𝑖‘ndx) ≠ (𝐸‘ndx)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 sralem.1 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 sralem.2 . . . . . 6 (Scalar‘ndx) ≠ (𝐸‘ndx)
32necomi 2987 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
41, 3setsnid 17232 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
5 sralem.3 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
65necomi 2987 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
71, 6setsnid 17232 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
8 sralem.4 . . . . . 6 (·𝑖‘ndx) ≠ (𝐸‘ndx)
98necomi 2987 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
101, 9setsnid 17232 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
114, 7, 103eqtri 2763 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
12 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
14 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
15 sraval 21138 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1614, 15sylan2 593 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1713, 16eqtrd 2771 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1817fveq2d 6885 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
1911, 18eqtr4id 2790 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
201str0 17213 . . 3 ∅ = (𝐸‘∅)
21 fvprc 6873 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
2221adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
23 fv2prc 6926 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
2412, 23sylan9eqr 2793 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
2524fveq2d 6885 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
2620, 22, 253eqtr4a 2797 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
2719, 26pm2.61ian 811 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  wss 3931  c0 4313  cop 4612  cfv 6536  (class class class)co 7410   sSet csts 17187  Slot cslot 17205  ndxcnx 17217  Basecbs 17233  s cress 17256  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  ·𝑖cip 17281  subringAlg csra 21134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-sets 17188  df-slot 17206  df-sra 21136
This theorem is referenced by:  srabase  21140  sraaddg  21141  sramulr  21142  sratset  21146  srads  21148  cchhllem  28871
  Copyright terms: Public domain W3C validator