MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 21061
Description: Lemma for srabase 21063 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (πœ‘ β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
srapart.s (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
sralem.1 𝐸 = Slot (πΈβ€˜ndx)
sralem.2 (Scalarβ€˜ndx) β‰  (πΈβ€˜ndx)
sralem.3 ( ·𝑠 β€˜ndx) β‰  (πΈβ€˜ndx)
sralem.4 (Β·π‘–β€˜ndx) β‰  (πΈβ€˜ndx)
Assertion
Ref Expression
sralem (πœ‘ β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π΄))

Proof of Theorem sralem
StepHypRef Expression
1 sralem.1 . . . . 5 𝐸 = Slot (πΈβ€˜ndx)
2 sralem.2 . . . . . 6 (Scalarβ€˜ndx) β‰  (πΈβ€˜ndx)
32necomi 2992 . . . . 5 (πΈβ€˜ndx) β‰  (Scalarβ€˜ndx)
41, 3setsnid 17178 . . . 4 (πΈβ€˜π‘Š) = (πΈβ€˜(π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩))
5 sralem.3 . . . . . 6 ( ·𝑠 β€˜ndx) β‰  (πΈβ€˜ndx)
65necomi 2992 . . . . 5 (πΈβ€˜ndx) β‰  ( ·𝑠 β€˜ndx)
71, 6setsnid 17178 . . . 4 (πΈβ€˜(π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩)) = (πΈβ€˜((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩))
8 sralem.4 . . . . . 6 (Β·π‘–β€˜ndx) β‰  (πΈβ€˜ndx)
98necomi 2992 . . . . 5 (πΈβ€˜ndx) β‰  (Β·π‘–β€˜ndx)
101, 9setsnid 17178 . . . 4 (πΈβ€˜((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩)) = (πΈβ€˜(((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
114, 7, 103eqtri 2760 . . 3 (πΈβ€˜π‘Š) = (πΈβ€˜(((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
12 srapart.a . . . . . 6 (πœ‘ β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
1312adantl 481 . . . . 5 ((π‘Š ∈ V ∧ πœ‘) β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
14 srapart.s . . . . . 6 (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
15 sraval 21060 . . . . . 6 ((π‘Š ∈ V ∧ 𝑆 βŠ† (Baseβ€˜π‘Š)) β†’ ((subringAlg β€˜π‘Š)β€˜π‘†) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
1614, 15sylan2 592 . . . . 5 ((π‘Š ∈ V ∧ πœ‘) β†’ ((subringAlg β€˜π‘Š)β€˜π‘†) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
1713, 16eqtrd 2768 . . . 4 ((π‘Š ∈ V ∧ πœ‘) β†’ 𝐴 = (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
1817fveq2d 6901 . . 3 ((π‘Š ∈ V ∧ πœ‘) β†’ (πΈβ€˜π΄) = (πΈβ€˜(((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs 𝑆)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩)))
1911, 18eqtr4id 2787 . 2 ((π‘Š ∈ V ∧ πœ‘) β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π΄))
201str0 17158 . . 3 βˆ… = (πΈβ€˜βˆ…)
21 fvprc 6889 . . . 4 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘Š) = βˆ…)
2221adantr 480 . . 3 ((Β¬ π‘Š ∈ V ∧ πœ‘) β†’ (πΈβ€˜π‘Š) = βˆ…)
23 fv2prc 6942 . . . . 5 (Β¬ π‘Š ∈ V β†’ ((subringAlg β€˜π‘Š)β€˜π‘†) = βˆ…)
2412, 23sylan9eqr 2790 . . . 4 ((Β¬ π‘Š ∈ V ∧ πœ‘) β†’ 𝐴 = βˆ…)
2524fveq2d 6901 . . 3 ((Β¬ π‘Š ∈ V ∧ πœ‘) β†’ (πΈβ€˜π΄) = (πΈβ€˜βˆ…))
2620, 22, 253eqtr4a 2794 . 2 ((Β¬ π‘Š ∈ V ∧ πœ‘) β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π΄))
2719, 26pm2.61ian 811 1 (πœ‘ β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   β‰  wne 2937  Vcvv 3471   βŠ† wss 3947  βˆ…c0 4323  βŸ¨cop 4635  β€˜cfv 6548  (class class class)co 7420   sSet csts 17132  Slot cslot 17150  ndxcnx 17162  Basecbs 17180   β†Ύs cress 17209  .rcmulr 17234  Scalarcsca 17236   ·𝑠 cvsca 17237  Β·π‘–cip 17238  subringAlg csra 21056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-sets 17133  df-slot 17151  df-sra 21058
This theorem is referenced by:  srabase  21063  sraaddg  21065  sramulr  21067  sratset  21074  srads  21077  cchhllem  28710
  Copyright terms: Public domain W3C validator