MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 20354
Description: Lemma for srabase 20356 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot (𝐸‘ndx)
sralem.2 (Scalar‘ndx) ≠ (𝐸‘ndx)
sralem.3 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
sralem.4 (·𝑖‘ndx) ≠ (𝐸‘ndx)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 sralem.1 . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 sralem.2 . . . . . 6 (Scalar‘ndx) ≠ (𝐸‘ndx)
32necomi 2997 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
41, 3setsnid 16838 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
5 sralem.3 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
65necomi 2997 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
71, 6setsnid 16838 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
8 sralem.4 . . . . . 6 (·𝑖‘ndx) ≠ (𝐸‘ndx)
98necomi 2997 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
101, 9setsnid 16838 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
114, 7, 103eqtri 2770 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
12 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
14 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
15 sraval 20353 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1614, 15sylan2 592 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1713, 16eqtrd 2778 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
1817fveq2d 6760 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
1911, 18eqtr4id 2798 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
201str0 16818 . . 3 ∅ = (𝐸‘∅)
21 fvprc 6748 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
2221adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
23 fv2prc 6796 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
2412, 23sylan9eqr 2801 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
2524fveq2d 6760 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
2620, 22, 253eqtr4a 2805 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
2719, 26pm2.61ian 808 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  Slot cslot 16810  ndxcnx 16822  Basecbs 16840  s cress 16867  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  ·𝑖cip 16893  subringAlg csra 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sets 16793  df-slot 16811  df-sra 20349
This theorem is referenced by:  srabase  20356  sraaddg  20358  sramulr  20360  sratset  20365  srads  20368  cchhllem  27157
  Copyright terms: Public domain W3C validator