MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 19943
Description: Lemma for srabase 19944 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot 𝑁
sralem.2 𝑁 ∈ ℕ
sralem.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 484 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 19942 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 594 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2856 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6668 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 sralem.1 . . . . . 6 𝐸 = Slot 𝑁
9 sralem.2 . . . . . 6 𝑁 ∈ ℕ
108, 9ndxid 16503 . . . . 5 𝐸 = Slot (𝐸‘ndx)
11 sralem.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
129nnrei 11641 . . . . . . . . . 10 𝑁 ∈ ℝ
13 5re 11718 . . . . . . . . . 10 5 ∈ ℝ
1412, 13ltnei 10758 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
1514necomd 3071 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
16 5lt8 11825 . . . . . . . . . 10 5 < 8
17 8re 11727 . . . . . . . . . . 11 8 ∈ ℝ
1813, 17, 12lttri 10760 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
1916, 18mpan 688 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
2013, 12ltnei 10758 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
2119, 20syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
2215, 21jaoi 853 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
2311, 22ax-mp 5 . . . . . 6 𝑁 ≠ 5
248, 9ndxarg 16502 . . . . . . 7 (𝐸‘ndx) = 𝑁
25 scandx 16626 . . . . . . 7 (Scalar‘ndx) = 5
2624, 25neeq12i 3082 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2723, 26mpbir 233 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
2810, 27setsnid 16533 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
29 5lt6 11812 . . . . . . . . . . 11 5 < 6
30 6re 11721 . . . . . . . . . . . 12 6 ∈ ℝ
3112, 13, 30lttri 10760 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
3229, 31mpan2 689 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
3312, 30ltnei 10758 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
3432, 33syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
3534necomd 3071 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
36 6lt8 11824 . . . . . . . . . 10 6 < 8
3730, 17, 12lttri 10760 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3836, 37mpan 688 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3930, 12ltnei 10758 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
4038, 39syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
4135, 40jaoi 853 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
4211, 41ax-mp 5 . . . . . 6 𝑁 ≠ 6
43 vscandx 16628 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
4424, 43neeq12i 3082 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
4542, 44mpbir 233 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
4610, 45setsnid 16533 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
4712, 13, 17lttri 10760 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
4816, 47mpan2 689 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
4912, 17ltnei 10758 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
5048, 49syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
5150necomd 3071 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
5217, 12ltnei 10758 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
5351, 52jaoi 853 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
5411, 53ax-mp 5 . . . . . 6 𝑁 ≠ 8
55 ipndx 16635 . . . . . . 7 (·𝑖‘ndx) = 8
5624, 55neeq12i 3082 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5754, 56mpbir 233 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
5810, 57setsnid 16533 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5928, 46, 583eqtri 2848 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
607, 59syl6reqr 2875 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
618str0 16529 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6657 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 483 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fv2prc 6704 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
651, 64sylan9eqr 2878 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6665fveq2d 6668 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
6761, 63, 663eqtr4a 2882 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
6860, 67pm2.61ian 810 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  wss 3935  c0 4290  cop 4566   class class class wbr 5058  cfv 6349  (class class class)co 7150   < clt 10669  cn 11632  5c5 11689  6c6 11690  8c8 11692  ndxcnx 16474   sSet csts 16475  Slot cslot 16476  Basecbs 16477  s cress 16478  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  ·𝑖cip 16564  subringAlg csra 19934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-sets 16484  df-sca 16575  df-vsca 16576  df-ip 16577  df-sra 19938
This theorem is referenced by:  srabase  19944  sraaddg  19945  sramulr  19946  sratset  19950  srads  19952  cchhllem  26667
  Copyright terms: Public domain W3C validator