MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 20214
Description: Lemma for srabase 20215 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot 𝑁
sralem.2 𝑁 ∈ ℕ
sralem.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 sralem.1 . . . . . 6 𝐸 = Slot 𝑁
2 sralem.2 . . . . . 6 𝑁 ∈ ℕ
31, 2ndxid 16748 . . . . 5 𝐸 = Slot (𝐸‘ndx)
4 sralem.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
52nnrei 11839 . . . . . . . . . 10 𝑁 ∈ ℝ
6 5re 11917 . . . . . . . . . 10 5 ∈ ℝ
75, 6ltnei 10956 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
87necomd 2996 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
9 5lt8 12024 . . . . . . . . . 10 5 < 8
10 8re 11926 . . . . . . . . . . 11 8 ∈ ℝ
116, 10, 5lttri 10958 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
129, 11mpan 690 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
136, 5ltnei 10956 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
1412, 13syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
158, 14jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
164, 15ax-mp 5 . . . . . 6 𝑁 ≠ 5
171, 2ndxarg 16747 . . . . . . 7 (𝐸‘ndx) = 𝑁
18 scandx 16855 . . . . . . 7 (Scalar‘ndx) = 5
1917, 18neeq12i 3007 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2016, 19mpbir 234 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
213, 20setsnid 16759 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
22 5lt6 12011 . . . . . . . . . . 11 5 < 6
23 6re 11920 . . . . . . . . . . . 12 6 ∈ ℝ
245, 6, 23lttri 10958 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
2522, 24mpan2 691 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
265, 23ltnei 10956 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
2725, 26syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
2827necomd 2996 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
29 6lt8 12023 . . . . . . . . . 10 6 < 8
3023, 10, 5lttri 10958 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3129, 30mpan 690 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3223, 5ltnei 10956 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
3331, 32syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
3428, 33jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
354, 34ax-mp 5 . . . . . 6 𝑁 ≠ 6
36 vscandx 16858 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
3717, 36neeq12i 3007 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
3835, 37mpbir 234 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
393, 38setsnid 16759 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
405, 6, 10lttri 10958 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
419, 40mpan2 691 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
425, 10ltnei 10956 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
4341, 42syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
4443necomd 2996 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
4510, 5ltnei 10956 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
4644, 45jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
474, 46ax-mp 5 . . . . . 6 𝑁 ≠ 8
48 ipndx 16866 . . . . . . 7 (·𝑖‘ndx) = 8
4917, 48neeq12i 3007 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5047, 49mpbir 234 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
513, 50setsnid 16759 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5221, 39, 513eqtri 2769 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
5453adantl 485 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
55 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
56 sraval 20213 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5755, 56sylan2 596 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5854, 57eqtrd 2777 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5958fveq2d 6721 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
6052, 59eqtr4id 2797 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
611str0 16742 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6709 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 484 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fv2prc 6757 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
6553, 64sylan9eqr 2800 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6665fveq2d 6721 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
6761, 63, 663eqtr4a 2804 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
6860, 67pm2.61ian 812 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  wss 3866  c0 4237  cop 4547   class class class wbr 5053  cfv 6380  (class class class)co 7213   < clt 10867  cn 11830  5c5 11888  6c6 11889  8c8 11891   sSet csts 16716  Slot cslot 16734  ndxcnx 16744  Basecbs 16760  s cress 16784  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  ·𝑖cip 16807  subringAlg csra 20205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-sets 16717  df-slot 16735  df-ndx 16745  df-sca 16818  df-vsca 16819  df-ip 16820  df-sra 20209
This theorem is referenced by:  srabase  20215  sraaddg  20216  sramulr  20217  sratset  20221  srads  20223  cchhllem  26978
  Copyright terms: Public domain W3C validator