![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sralem | Structured version Visualization version GIF version |
Description: Lemma for srabase 21200 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
sralem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
sralem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
sralem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
sralem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
Ref | Expression |
---|---|
sralem | ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sralem.1 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | sralem.2 | . . . . . 6 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
3 | 2 | necomi 3001 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
4 | 1, 3 | setsnid 17256 | . . . 4 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
5 | sralem.3 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
6 | 5 | necomi 3001 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
7 | 1, 6 | setsnid 17256 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
8 | sralem.4 | . . . . . 6 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
9 | 8 | necomi 3001 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
10 | 1, 9 | setsnid 17256 | . . . 4 ⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
11 | 4, 7, 10 | 3eqtri 2772 | . . 3 ⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
15 | sraval 21197 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
16 | 14, 15 | sylan2 592 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
17 | 13, 16 | eqtrd 2780 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
18 | 17 | fveq2d 6924 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
19 | 11, 18 | eqtr4id 2799 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
20 | 1 | str0 17236 | . . 3 ⊢ ∅ = (𝐸‘∅) |
21 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
22 | 21 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
23 | fv2prc 6965 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
24 | 12, 23 | sylan9eqr 2802 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
25 | 24 | fveq2d 6924 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
26 | 20, 22, 25 | 3eqtr4a 2806 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
27 | 19, 26 | pm2.61ian 811 | 1 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 ·𝑖cip 17316 subringAlg csra 21193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 df-sra 21195 |
This theorem is referenced by: srabase 21200 sraaddg 21202 sramulr 21204 sratset 21211 srads 21214 cchhllem 28919 |
Copyright terms: Public domain | W3C validator |