Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sralem | Structured version Visualization version GIF version |
Description: Lemma for srabase 20441 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
sralem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
sralem.2 | ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) |
sralem.3 | ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) |
sralem.4 | ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) |
Ref | Expression |
---|---|
sralem | ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sralem.1 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | sralem.2 | . . . . . 6 ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) | |
3 | 2 | necomi 2998 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
4 | 1, 3 | setsnid 16910 | . . . 4 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
5 | sralem.3 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) | |
6 | 5 | necomi 2998 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
7 | 1, 6 | setsnid 16910 | . . . 4 ⊢ (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) = (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
8 | sralem.4 | . . . . . 6 ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) | |
9 | 8 | necomi 2998 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
10 | 1, 9 | setsnid 16910 | . . . 4 ⊢ (𝐸‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
11 | 4, 7, 10 | 3eqtri 2770 | . . 3 ⊢ (𝐸‘𝑊) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
12 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
13 | 12 | adantl 482 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
14 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
15 | sraval 20438 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
17 | 13, 16 | eqtrd 2778 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
18 | 17 | fveq2d 6778 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
19 | 11, 18 | eqtr4id 2797 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
20 | 1 | str0 16890 | . . 3 ⊢ ∅ = (𝐸‘∅) |
21 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
22 | 21 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = ∅) |
23 | fv2prc 6814 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) | |
24 | 12, 23 | sylan9eqr 2800 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
25 | 24 | fveq2d 6778 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝐴) = (𝐸‘∅)) |
26 | 20, 22, 25 | 3eqtr4a 2804 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸‘𝑊) = (𝐸‘𝐴)) |
27 | 19, 26 | pm2.61ian 809 | 1 ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 ·𝑖cip 16967 subringAlg csra 20430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sets 16865 df-slot 16883 df-sra 20434 |
This theorem is referenced by: srabase 20441 sraaddg 20443 sramulr 20445 sratset 20452 srads 20455 cchhllem 27254 |
Copyright terms: Public domain | W3C validator |