MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralemOLD Structured version   Visualization version   GIF version

Theorem sralemOLD 21193
Description: Obsolete version of sralem 21192 as of 29-Oct-2024. Lemma for srabase 21194 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralemOLD.1 𝐸 = Slot 𝑁
sralemOLD.2 𝑁 ∈ ℕ
sralemOLD.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralemOLD (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralemOLD
StepHypRef Expression
1 sralemOLD.1 . . . . . 6 𝐸 = Slot 𝑁
2 sralemOLD.2 . . . . . 6 𝑁 ∈ ℕ
31, 2ndxid 17230 . . . . 5 𝐸 = Slot (𝐸‘ndx)
4 sralemOLD.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
52nnrei 12272 . . . . . . . . . 10 𝑁 ∈ ℝ
6 5re 12350 . . . . . . . . . 10 5 ∈ ℝ
75, 6ltnei 11382 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
87necomd 2993 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
9 5lt8 12457 . . . . . . . . . 10 5 < 8
10 8re 12359 . . . . . . . . . . 11 8 ∈ ℝ
116, 10, 5lttri 11384 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
129, 11mpan 690 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
136, 5ltnei 11382 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
1412, 13syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
158, 14jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
164, 15ax-mp 5 . . . . . 6 𝑁 ≠ 5
171, 2ndxarg 17229 . . . . . . 7 (𝐸‘ndx) = 𝑁
18 scandx 17359 . . . . . . 7 (Scalar‘ndx) = 5
1917, 18neeq12i 3004 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2016, 19mpbir 231 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
213, 20setsnid 17242 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
22 5lt6 12444 . . . . . . . . . . 11 5 < 6
23 6re 12353 . . . . . . . . . . . 12 6 ∈ ℝ
245, 6, 23lttri 11384 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
2522, 24mpan2 691 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
265, 23ltnei 11382 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
2725, 26syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
2827necomd 2993 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
29 6lt8 12456 . . . . . . . . . 10 6 < 8
3023, 10, 5lttri 11384 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3129, 30mpan 690 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3223, 5ltnei 11382 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
3331, 32syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
3428, 33jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
354, 34ax-mp 5 . . . . . 6 𝑁 ≠ 6
36 vscandx 17364 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
3717, 36neeq12i 3004 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
3835, 37mpbir 231 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
393, 38setsnid 17242 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
405, 6, 10lttri 11384 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
419, 40mpan2 691 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
425, 10ltnei 11382 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
4341, 42syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
4443necomd 2993 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
4510, 5ltnei 11382 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
4644, 45jaoi 857 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
474, 46ax-mp 5 . . . . . 6 𝑁 ≠ 8
48 ipndx 17375 . . . . . . 7 (·𝑖‘ndx) = 8
4917, 48neeq12i 3004 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5047, 49mpbir 231 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
513, 50setsnid 17242 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5221, 39, 513eqtri 2766 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
5453adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
55 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
56 sraval 21191 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5755, 56sylan2 593 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5854, 57eqtrd 2774 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5958fveq2d 6910 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
6052, 59eqtr4id 2793 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
611str0 17222 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6898 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fv2prc 6951 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
6553, 64sylan9eqr 2796 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6665fveq2d 6910 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
6761, 63, 663eqtr4a 2800 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
6860, 67pm2.61ian 812 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  wss 3962  c0 4338  cop 4636   class class class wbr 5147  cfv 6562  (class class class)co 7430   < clt 11292  cn 12263  5c5 12321  6c6 12322  8c8 12324   sSet csts 17196  Slot cslot 17214  ndxcnx 17226  Basecbs 17244  s cress 17273  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  ·𝑖cip 17302  subringAlg csra 21187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-sets 17197  df-slot 17215  df-ndx 17227  df-sca 17313  df-vsca 17314  df-ip 17315  df-sra 21189
This theorem is referenced by:  srabaseOLD  21195  sraaddgOLD  21197  sramulrOLD  21199  sratsetOLD  21206  sradsOLD  21209  cchhllemOLD  28916
  Copyright terms: Public domain W3C validator