MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralemOLD Structured version   Visualization version   GIF version

Theorem sralemOLD 20440
Description: Obsolete version of sralem 20439 as of 29-Oct-2024. Lemma for srabase 20441 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralemOLD.1 𝐸 = Slot 𝑁
sralemOLD.2 𝑁 ∈ ℕ
sralemOLD.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralemOLD (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralemOLD
StepHypRef Expression
1 sralemOLD.1 . . . . . 6 𝐸 = Slot 𝑁
2 sralemOLD.2 . . . . . 6 𝑁 ∈ ℕ
31, 2ndxid 16898 . . . . 5 𝐸 = Slot (𝐸‘ndx)
4 sralemOLD.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
52nnrei 11982 . . . . . . . . . 10 𝑁 ∈ ℝ
6 5re 12060 . . . . . . . . . 10 5 ∈ ℝ
75, 6ltnei 11099 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
87necomd 2999 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
9 5lt8 12167 . . . . . . . . . 10 5 < 8
10 8re 12069 . . . . . . . . . . 11 8 ∈ ℝ
116, 10, 5lttri 11101 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
129, 11mpan 687 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
136, 5ltnei 11099 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
1412, 13syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
158, 14jaoi 854 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
164, 15ax-mp 5 . . . . . 6 𝑁 ≠ 5
171, 2ndxarg 16897 . . . . . . 7 (𝐸‘ndx) = 𝑁
18 scandx 17024 . . . . . . 7 (Scalar‘ndx) = 5
1917, 18neeq12i 3010 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2016, 19mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
213, 20setsnid 16910 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
22 5lt6 12154 . . . . . . . . . . 11 5 < 6
23 6re 12063 . . . . . . . . . . . 12 6 ∈ ℝ
245, 6, 23lttri 11101 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
2522, 24mpan2 688 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
265, 23ltnei 11099 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
2725, 26syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
2827necomd 2999 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
29 6lt8 12166 . . . . . . . . . 10 6 < 8
3023, 10, 5lttri 11101 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3129, 30mpan 687 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3223, 5ltnei 11099 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
3331, 32syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
3428, 33jaoi 854 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
354, 34ax-mp 5 . . . . . 6 𝑁 ≠ 6
36 vscandx 17029 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
3717, 36neeq12i 3010 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
3835, 37mpbir 230 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
393, 38setsnid 16910 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
405, 6, 10lttri 11101 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
419, 40mpan2 688 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
425, 10ltnei 11099 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
4341, 42syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
4443necomd 2999 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
4510, 5ltnei 11099 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
4644, 45jaoi 854 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
474, 46ax-mp 5 . . . . . 6 𝑁 ≠ 8
48 ipndx 17040 . . . . . . 7 (·𝑖‘ndx) = 8
4917, 48neeq12i 3010 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5047, 49mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
513, 50setsnid 16910 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5221, 39, 513eqtri 2770 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
5453adantl 482 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
55 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
56 sraval 20438 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5755, 56sylan2 593 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5854, 57eqtrd 2778 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5958fveq2d 6778 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
6052, 59eqtr4id 2797 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
611str0 16890 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6766 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fv2prc 6814 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
6553, 64sylan9eqr 2800 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6665fveq2d 6778 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
6761, 63, 663eqtr4a 2804 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
6860, 67pm2.61ian 809 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  c0 4256  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275   < clt 11009  cn 11973  5c5 12031  6c6 12032  8c8 12034   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912  s cress 16941  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  ·𝑖cip 16967  subringAlg csra 20430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-sca 16978  df-vsca 16979  df-ip 16980  df-sra 20434
This theorem is referenced by:  srabaseOLD  20442  sraaddgOLD  20444  sramulrOLD  20446  sratsetOLD  20453  sradsOLD  20456  cchhllemOLD  27255
  Copyright terms: Public domain W3C validator